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Abstract
Forecasting disease spread is a critical tool to help public health officials design and
plan public health interventions. However, the expected future state of an epidemic is
not necessarily well defined as disease spread is inherently stochastic, contact patterns
within a population are heterogeneous, and behaviors change. In this work, we use
time-dependent probability generating functions (PGFs) to capture these character-
istics by modeling a stochastic branching process of the spread of a disease over a
network of contacts in which public health interventions are introduced over time.
To achieve this, we define a general transmissibility equation to account for varying
transmission rates (e.g. masking), recovery rates (e.g. treatment), contact patterns (e.g.
social distancing) and percentage of the population immunized (e.g. vaccination). The
resulting framework allows for a temporal and probabilistic analysis of an interven-
tion’s impact on disease spread, which match continuous-time stochastic simulations
that are much more computationally expensive. To aid policy making, we then define
several metrics over which temporal and probabilistic intervention forecasts can be
compared: Looking at the expected number of cases and the worst-case scenario over
time, as well as the probability of reaching a critical level of cases and of not seeing any
improvement following an intervention. Given that epidemics do not always follow
their average expected trajectories and that the underlying dynamics can change over
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time, our work paves the way for more detailed short-term forecasts of disease spread
and more informed comparison of intervention strategies.

Keywords Disease modeling · Forecasting · Networks · Stochastic process ·
Branching process

1 Introduction

Monitoring the spread of COVID-19 is at the forefront of public health agendas as new
variants emerge. Transmission across the globe has forced countries to mitigate the
spread with their own combination of masking and social distancing (Chu et al. 2020),
restrictions on mobility (Aleta et al. 2020, Althouse et al. 2020), improved ventilation
(Sun and Zhai 2020), contact tracing (Kojaku et al. 2021) and other local interventions.
Even in neighboring regions, the diversity of interventions reflect differences in local
policy, culture, differences in local forecasts, aswell as different goals for interventions
(White and Hébert-Dufresne 2020). For example, some populations may attempt to
minimize the expected number of COVID-19 transmissions while other may only
wish to minimize the probability of overwhelming their healthcare system. Whether
or not these different objectives would lead to the same policies is unclear given the
underlying randomness and uncertainty inherent to epidemic forecasting.

There are two important issues to consider when comparing forecasts of epidemic
interventions: Forecasts should be probabilistic and time-dependent as disease spread
is stochastic and heterogeneous (Noël et al. 2009; Allen et al. 2022). Temporal proba-
bilistic forecasts must then be summarized by specifying given statistics, as well as a
temporal window to target, chosen to capture the intended goal(s) of the intervention.
And, since forecasts evolve, the relative effectiveness of two policies can itself vary
over time. Altogether, comparing multiple intervention policies is not as simple as
comparing the averaged effective growth rate of the epidemic.

Past work on intervention comparisons has studied how different policies such as
lockdown strategies or physical distancing impact disease trajectory within a popu-
lation (Milne et al. 2008; Wessel et al. 2011; Peak et al. 2017; Davies et al. 2020;
Churches and Jorm 2020). Most of the comparisons in the literature, however, are
based around the average of the stochastic (often simulated) outcomes or present
confidences intervals for derived measures such number of hospitalizations or the
effective reproductive number (Milne et al. 2008; Davies et al. 2020). In comparison,
our philosophy is more similar to probabilistic forecasting in meteorology, where a
cone of uncertainty of storm paths or expected rainfall are the targets. We argue that
new summary statistics, which directly compare disease outcomes and their probabil-
ity of occurring, need to be developed to account for the stochastic nature of disease
trajectories.

In this paper, we use a mathematical framework to track the distribution of cumula-
tive and active cases in a networkedpopulationover the course of epidemic generations.
When compared to simulations, these epidemic generations offer a surprisingly accu-
rate proxy for the actual temporal dynamics of the epidemic (Allen et al. 2022). We
extend this framework in Sect. 2 to allow temporal interventions that affect parameter
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Fig. 1 Schematic of generations of infection through a networkwith interventions.An initial node is infected
during generation 0 (shown in deep red). Subsequent epidemic generations are represented in shades of red,
with each node labeled in black by the generation in which it was infected. The blue shaded nodes were
part of an intervention (e.g., vaccination), hindering the spread of the infection along that branch of the
tree if the intervention preceded a potential transmission. Interventions are also temporal, shown in shades
of blue and labeled in white by the epidemic generation when their intervention occurred. The branching
dynamics of the resulting transmission tree are highly complex as the two dynamical processes compete,
with the disease potentially spreading exponentially but slowing down as the intervention ramps up (Color
figure online)

values or contact structure from one epidemic generation to the next, thereby mod-
ifying the probabilistic epidemic forecasts over time. In Sect. 3, we present specific
network interventions and offer a series of summary statistics chosen to capture the
different possible goals of these interventions.

We demonstrate our approach to a specific case study in Sect. 4 where we compare
targeted and random vaccination rollouts. Targeted vaccination is meant to immu-
nize highly connected individuals (e.g. healthcare workers) that are at higher risk of
receiving and passing the epidemic. However, this strategy comes at a cost and we
assume that the targeted rollout of a vaccine must be slower than the random rollout
of the same vaccine. Using our mathematical model and our summary statistics of
temporal probabilistic forecasts we then ask: How fast must targeted vaccination be
to outperform random vaccination? Do different metrics of intervention performance
lead to the same answer? There are complex competition dynamics occurring between
the epidemics unfolding on a contact network and interventions rolled out to affect
this network (see Fig. 1). This work establishes a framework to study this dynamics
and answer the previous questions. Section5 outlines the generality of our approach,
showcasing other types of interventionswhich can bemodeled using ourmethodology.
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Fig. 2 Mapping continuous-time dynamics to branching process generations. The process in which
continuous-time disease spread is mapped to a discrete-time branching process is shown above. An infec-
tious individual will infect a certain number of other individuals via a branching process, which is captured
by the various transmission terms in Eq. (16). Once those individuals are identified, they are mapped to
the next epidemic generation. For this specific example, we have an initial infectious individual (left red
node labeled by generation 0), that infects three individuals at different probabilities of infection. If the
transmission occurs in the same generational-time interval, here in the 0-th interval with probability t0, the
new case (bottom red node labeled by generation 1) becomes infectious at generation 1. When the trans-
mission occurs during generation 1, the individual is conceptually mapped back to the start of generation
1 (top red node labeled by generation 1) and this occurs with probability w0t1. This probability is the
probability of the 0-th generation passing multiplied by the probability of transmission occurring during the
first generational interval. Likewise, there is a probability of two generations passing before a transmission
occurs, with probability w0w1t2, meaning the individual (middle red node labeled by generation 1) is also
mapped back to the start of generation 1. This mapping allows the analysis of continuous-time epidemic
dynamics as a simpler discrete branching process (Color figure online)

2 Theoretical Analysis

2.1 Assumptions

Our framework assumes that the spreading process of the disease being studied fol-
lows undirected percolation dynamics over a contact network and can therefore be
analyzed as a branching process. Even though the underlying transmission dynam-
ics occur in continuous time, we determine the probability of infection according to
discretized generational time. This is represented in Fig. 2, where each solid-line
arrow is a transmission event labeled with the probability of infection. We map these
stochastic transmissions to a discretized epidemic generation. This discretization is
shown in Fig. 2 with the vertical dotted lines representing time passing. At each gener-
ation, the branching process of transmissions from each infectious individual provides
the new infectious individuals for the next generation. Even if transmission occurs in
continuous time, the discrete-time mapping places individuals in the subsequent gen-
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eration (sometimes underestimating time to transmission, sometimes overestimating
it). The system is then updated and this process continues for the time-frame set. This
assumption that transmission aligns with generational time makes analytical calcula-
tions and tracking of active cases easier even though it introduces small errors given
that transmissions are pulled backward and forward in time, see Fig. 2 caption for
an example case. This is an approximation of a spreading process (Kenah and Robins
2007) but was recently shown to provide accurate temporal forecasts when compared
to continuous-time simulations (Allen et al. 2022).

In our case studies, we also assume that contacts in the population follows a geo-
metric distribution. The aim of this assumption is to have a heterogeneous network
of contacts. The geometric distribution is the discrete equivalent of the exponential
distribution, which has been observed in real-world contact patterns (Ames et al. 2011;
Bansal et al. 2007). With this distribution, we calculate the average number of sec-
ondary cases, R0, to be 3. Though contact networks are inherently temporal, we here
assume a static contact network except for the removal of connections due to network-
based interventions.When applying an intervention, specifically a vaccination strategy,
we assume that vaccination offers perfect protection. Likewise, the intricacies of vac-
cine efficacy (e.g. waning of immunity or the need for multiple doses) will not be
covered in this work but could be incorporated in the framework. Our goal is instead
to provide a general model of disease spread and showcase how a few specific types
of interventions can be included in temporal, probabilistic, and analytical forecasts.
The software associated with our model is available at Refs. Allen (2021, 2023).

Forecasts, in our framework, are defined as the time evolution of our branching
process approach and will not be directly validated with data. While the final states
predicted by our general approach have been previously validated with empirical data
(Hébert-Dufresne et al. 2021), data to produce temporal forecasts of interventions are
not available. Further validation would require contact distributions, epidemiological
parameters, and incidence rates within communities before and after interventions.
Instead, we rely on simulations for validation.

2.2 Noël et al. Probability Generating Function (PGFs) Formalism

PGFs allow us to include inherent heterogeneity in epidemiological forecasting by
calculating the probability distribution associated with specific network transmission
trees. Generating functions offer elegant derivations of many statistical properties
(Wilf 2005; Newman 2002).

For epidemiological forecasting purposes, the focus is on the PGF of the network
degree distribution, defined as

G0(x) =
∞∑

k=0

pkx
k, (1)

where the kth coefficient, pk , is the probability of randomly choosing a node with
degree k from the network. The average degree of the network, 〈k〉, is found by
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differentiating Eq. (1) and evaluating at x = 1,

G ′
0(1) = 〈k〉 =

∞∑

k=0

kpk . (2)

This result is used to generate the distribution of potential transmissions, or the excess
degree distribution,

G1(x) = G ′
0(x)

G ′
0(1)

=
∑

k(k + 1)pk+1xk

〈k〉 =
∞∑

k=0

qkx
k . (3)

The probability of reaching a node with degree k from a randomly chosen edge is
represented by the coefficients qk ∝ (k + 1)pk+1 due to the fact that a node of degree
k + 1 is k + 1 times more likely to be connected to a random edge than a node of
degree 1. The node of degree k + 1 then has k remaining edges to transmit through,
which corresponds to the derivative and renormalization of the original PGF.

To incorporate the disease spread through the excess degree distribution, qk , it is
necessary to include, pl|k , the probability of � transmissions from a single infectious
node, given that it has excess degree k,

pl|k =
(
k

l

)
T l(1 − T )k−l , (4)

where T is the probability of transmission and is further explained in Sect. 2.3. There-
fore, the number of infections caused by “patient zero” is equal to the probability of
having degree k and transmitting the disease to � of those k neighbors. This is defined
as G0(x; T ), given by

G0(x; T ) =
∞∑

l=0

∞∑

k=l

pk pl|k xl

=
∞∑

k=0

k∑

l=0

pk

(
k

l

)
T l(1 − T )k−l xl

= G0
(
T x + (1 − T )

)
. (5)

As G1(x) is derived from G0(x), so can G1(x; T ) be derived from G0(x; T ). In
a static network, G1(x; T ) represents the PGF for the probability distribution of the
number of infections caused by a single node, i.e., the secondary case distribution.

Now, PGFs traditionally do not keep track of time as the branching process unfolds;
however, Noël et al. developed a piece-wise generating function that tracks the branch-
ing process via generations (Noël et al. 2009). Mathematically, for a static network,
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this is given by

Gg(x; T ) =
{
G0(x; T ) g = 0

G1(x; T ) g > 0,
(6)

where G0(x; T ) defines the distribution for the first generation and G1(x; T ) defines
all future generations. In this work we expand on the framework laid out above to
demonstrate the effect that temporal behaviors can have on the branching process.

FollowingNoël et al. (2009),we calculate the cumulative case distribution. To do so,
we use a simple generation scheme illustrated in Fig. 1: Any transmission from a node
infected in generation g is considered to be in epidemic generation g + 1 regardless
of the exact timing of the transmission event. From this, let sg be the number of
cumulative cases at generation g and let mg be the number of infectious nodes strictly
belonging to generation g. Note that in this way, sg = ∑g

g′=0 mg′ . We denote ψ
g
sm

the probability of having s total infections by the end of the g-th generation with m
becoming infected (and thus being infectious) during that generation. We also denote

�
g
0 (x, y) =

∞∑

s=1

s∑

m=0

ψ
g
smx

s ym (7)

the associated PGF. As demonstrated in Ref. Noël et al. (2009), �g
0 (x, y) is derived

via a recursive function for the probability of sg−1 total infections in generation g−1.
Each new infection, mg−1, in g − 1 has its own possible transmission connections,
Gg−1(xy; T ), incorporating all possible transmission events leading up to generation
g. Mathematically, this is given by

�
g
0 (x, y) =

∞∑

s′=1

s′∑

m′=0

ψ
g−1
s′m′ xs

′ [Gg−1(xy; T )]m′

= �
g−1
0 (x,Gg−1(xy; T )). (8)

Successive iterations of Eq. (8) from an initial condition (e.g., �0
0 (x, y) = xy for a

single patient zero) then allows to compute ψ
g
sm at the desired generation g.

2.3 Formalism Extension: Altering Transmission

Given a time point, intervention strategies can be implemented, altering the future
dynamics of the disease spread. From Eq. (6), we generalize the piece-wise generating
function to adhere to the intervention strategy being used. Given the type of interven-
tion strategy, there can be multiple generations with an intervention implemented. So,
to capture interacting temporal features of the disease spread and intervention, each
epidemic generation is defined by its own PGF,

Gg(x; Tg), (9)
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as contact patterns change along with a new transmissibility expression, Tg , which
will be derived in the following section. We represent this model in Fig. 1, where the
branching process is dynamically slowed by an intervention rollout.

PGFs model a stochastic process which encapsulates the random nature of disease
spread. The probability of a current infectious person causing a new infection, or the
probability of transmission, is captured in T . We will follow Susceptible-Infectious-
Recovered (SIR) dynamics which could depend on the time since infection t ′, the
time-dependent transmission rate β(t ′), and time-dependent recovery rate γ (t ′). One
could then calculate a general probability for transmitting before recovery, but the
exact calculation is often model-dependent. We will follow most models and consider
that transmission and recovery as simple Poisson processes occurring at fixed rate β

and γ respectively. However, transmission occurs only if the contact is not immune,
which is true with probability (1− Vg), where Vg is proportion of the population that
has been vaccinated by generation g. In other words, Vg is the cumulative proportion
of the population vaccinated. Assuming infectiousness of a node in generation g lasts
for some random time τ then the probability of the individual transmitting infection
to another individual is

T (τ ) = (1 − Vg)[1 − lim
δt→0

(1 − βδt)τ/δt ]
= (1 − Vg)(1 − exp−τβ) . (10)

When evaluating the probability of a particular τ , the cumulative distribution function
over τ is evaluated, shown by

F(τ ) = (1 − lim
δt→0

(1 − γ δt)γ /δt )

= (1 − exp−γ τ ) (11)

The above derivation uses the average rate of recovery, γ . Taking the derivative of Eq.
(11) gives the probability mass function over τ ,

f (τ ) = γ exp−γ τ . (12)

We can then compute the total probability of transmission by calculating the average
probability of an individual transmitting before its recovery, given that the individual
recovers at time τ . The average transmissibility for a generation, Tg , is therefore

Tg = (1 − Vg)
∫ ∞

0
T (τ ) f (τ )dτ = (1 − Vg)

β

β + γ
, (13)

with this derivation followingRefs.Hébert-Dufresne et al. (2013) andHébert-Dufresne
and Althouse (2015). The expression for Tg allows us to interpret the probability of
transmission as the probability a transmission occurs first in a superposition of Poisson
processes, transmission and recovery with rates β and γ respectively.

In our model, the passage of time to the next generation must also be included,
which is determined by the product of the average excess degree, q = G ′

1(1), and the
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transmission rate yielding qβ (Allen et al. 2022). Allen et al. confirms similarities in
the mapping between continuous time and discretized generational time given this rate
for passage of time. Section 3.3 discusses the continuous-time simulations that exhibit
the validation of our generational approach. Treating this as another Poisson process,
and allowing for interventions, we find the probability of a single person causing an
infection leading to the next generation to be

tg = (1 − Vg)
β

β + γ + (1 − Vg)qgβ
, (14)

where again Vg is the cumulative proportion of the population vaccinated by at g, and
where qg is the generation-dependent average excess degree and is defined at Eq. (21).
Similarly, the probability that the next generation occurs before a given person either
transmits the disease or recovers is

wg = (1 − Vg)qgβ

β + γ + (1 − Vg)qgβ
. (15)

To encapsulate the probability transmission given Eqs. (14) and (15) for each genera-
tion, we combine the probability of a single person causing an infection leading to the
next generation with the sum of probabilities that the next generation occurs before a
particular transmission or recovery event,

Tg = tg + wgtg+1 + wgwg+1tg+2 + ...

= tg +
∞∑

�=g+1

( �−1∏

�′=g

w�′
)

· t�. (16)

This last expression closes our mapping of continuous-time SIR dynamics to a
discrete-time branching process. The same recipe can be used to map other com-
partmental models to branching processes by including additional mechanisms.
Alternatively, a SEIR with a fixed latent period of one epidemic generation can be
implemented by setting tg = 0 and wg = 1 to delay transmission. Regardless, once
transmissions dynamics are mapped to a discrete-time (or generational) branching
process, our general framework is agnostic to the details of the transmission mecha-
nisms.

3 Interventions

With an understanding of how the transmission process of this framework operates, we
nowaim to take individuals out of this process via intervention strategies. It is important
to remember that we assume a node infected in generation g infects nodes that are
mapped to be in generation g + 1. If an intervention strategy is implemented during
a generation, it is assumed it would occur immediately at the start of that generation.
Intervention strategies directly alter the numerical value of Eq. (16), then Eq. (8) is

123



  118 Page 10 of 20 M. C. Boudreau et al.

recalculated to update the probability of having s cumulative infections and m active
cases. The variables qg and Vg that appear in Eq. (16), via tg in Eq. (14) and wg in Eq.
(15), correspondwith one of two types of intervention strategies. Respectively, the two
types of strategies are: (1) Uniform or random interventions, where proportions of the
population are not susceptible to the disease. (2) Network interventions, which pertain
to altering the degree distributions, such as targeted vaccination. When no network
interventions are imposed on the system, qg is kept consistent across all generations,
after it is derived from the original excess degree distribution. Conversely, the value
of Vg is kept at zero for all generations when there is a targeted intervention, since
contacts around targeted vaccination are removed in qg and no contacts can then lead
to vaccinated nodes in this scenario. Here we focus on uniform interventions and
network interventions, along with comparing them.

3.1 Uniform or Random Interventions

In this work, we consider the uniform intervention as a random vaccination strategy.
This intervention strategy is implemented by randomly vaccinating susceptible nodes
in the population with uniform probability (Pastor-Satorras andVespignani 2002). The
Vg term of Eqs. (14) and (15) represents the probability of a node being vaccinated,
along with the proportion of the population to be vaccinated at generation g. This
quantity is therefore always a fraction between 0 and 1.

When a vaccination intervention is implemented at only one generation, meaning in
a single intervention, the vaccinated population Vg changes as a simple step-function.
Realistically, vaccination interventions are implemented over time and over multiple
generations, which we can incorporate into our modeling framework by defining a
rollout strategy. Under a vaccination rollout, the cumulative percentage of the popula-
tion to be vaccinated is spread over multiple generations, slowly affecting the growth
of the epidemic spread along each of its active generational branches. For multiple
generations, we can state that the total proportion of the population vaccinated over
all generations, or cumulative percentage vaccinated, is given by

Vtotal =
∞∑

g=1

Vg, (17)

where each generational proportion vaccinated is defined as

Vg =
∞∑

k=0

δ
g
k pk . (18)

When implementing random vaccination, the entire network is uniformly vaccinated,
resulting in

δ
g
k = Vg, (19)
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Fig. 3 Random and targeted rollout comparison and validation. We use a geometric distribution defined
by pk = 0.6k−1(0.4), where k = 1, resulting in R0 = 3. Each panel details probability distributions of
cumulative infections at generations 2, 4, 6, 8 and 10. Panel (a) depicts the comparison between a non-
intervened system (dotted lines) and a random rollout strategy of 0.5% of the population being randomly
chosen to be vaccinated generations 4, 6, 8, and 10 (solid lines). By the end of generation 10, 2.0% of the
population is vaccinated. Panel (b) depicts simulations of the random rollout vaccination strategy, which
validates the modeled generations. Panel (c) depicts the comparison between a non-intervened system
(dotted lines) and a targeted rollout strategy where the first 0.5% of highest degree individuals were chosen
to be vaccinated at generations 4, 6, 8, and 10 (solid lines). Panel (d) depicts simulations of the targeted
rollout vaccination strategy, which validates the modeled generations

for all k. It is important to note that random vaccination does not alter the general
structure of the degree distribution or the average excess degree due to the condition
set in Eq. (19).

Figure 3a showcases the difference in the probability distributions of cumulative
infections on a system that has no intervention implemented (dotted lines), and one
with a random rollout of 0.5% occurring at generations 4, 6, 8, and 10 (solid lines).
Given that the intervention does not occur until generation 4, the distributions for
generation 2 are exactly the same. For generations occurring after generation 4, the
distributions begin to deviate from one another.

Figure 3b validates the extended PGF formalism formultiple interventions, with the
theoretical distributions shown alongside numerical simulations following an event-
driven, continuous time framework (Allen et al. 2022). The analytical distributions
show a bit of an overestimation at generation 10, which will be discussed in Sect. 3.3.
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3.2 Targeted Network Interventions

To demonstrate a network intervention, in this work we show how a targeted vaccina-
tion strategy is implemented. The goal of targeted vaccination is to focus vaccination
efforts on the group of nodes with the highest degrees in the network, or the individuals
with the most contacts. This strategy results in reducing the impact of the individuals
that have the most potential for creating a superspreading event, for an example see
Rosenblatt et al. (2020).

Given a percentage of the population to vaccinate in g, as defined in Eq. (18), we
start with degree classes k′ = kmax and vaccinate a fraction δk′ of the degree class
before moving to degree class k′ − 1. To determine the fraction vaccinated for each
degree class, we define

δ
g
k′ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if
∑∞

k=k′ pk < Vg(
Vg − ∑∞

k=k′+1 pk

)
pk′ , if

∑∞
k=k′+1 pk < Vg

and
∑∞

k=k′ pk > Vg
0, otherwise,

where this non-uniform intervention will alter the degree distribution and average
excess degree.

By the independence assumption of the configuration model, each neighbor will
be vaccinated in generation g with probability equal to the probability that following
a random edge leads to a vaccinated node, call this Hg . Thinking in terms of number
of edges we thus compute

Hg =
∑∞

k=0(k + 1)δgk+1 pk+1∑∞
k=0(k + 1)pk+1

. (20)

Therefore, the probability of a node being unvaccinated in g is equal to 1 − Hg .
Now, the truncation of the degree distribution in g alters the average excess degree

qg , along with the coefficients of Eqs. (1) and (3). To determine the new qg , we must
recompute G ′

g(1). Multiplying this by the proportion of nodes that are unvaccinated
gives an updated qg ,

G ′
g(1) = (1 − Hg)

[∑∞
k=0 k(k + 1)(1 − δ

g
k+1)pk+1∑∞

k=0(k + 1)(1 − δ
g
k+1)pk+1

]
= qg, (21)

which is then used to derive the new Tg for a given g.
Similar to random vaccination described in Sect. 3.1, targeted vaccination can be

implemented via one instance of vaccination, or multiple. Figure3c shows the differ-
ence between a non-intervention strategy and a targeted rollout vaccination scheme
of 0.5% at generations 4, 6, 8, and 10. A rollout strategy is conducted in the same
manner for both random and targeted vaccination. Similar to random vaccination, the
non-intervention leads a lower probability of seeing 100–400 cases than targeted (or
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Fig. 4 Flat distributions at generation 10. Given a geometric distribution defined by pk = 0.4k−1(0.6), each
line represents the probability distribution of cumulative infections at generation 10. The difference between
the distributions is that the percentage of the population that were chosen to be vaccinated at generations
4, 6, 8, and 10 varies. The lower percentages per generation lead to flat distributions, whereas the higher
percentages per generation provide distributions that have zero probability of cumulative infections past a
certain point (Color figure online)

random) vaccination. Does that mean the non-intervention is better? This question
is answered in Fig. 4, which showcases how the weaker the intervention, the flatter
the cumulative case distribution. These flatter distributions allow for there to be some
chance of infecting more individuals over time. Figure 4 also shows that the stronger
the intervention, the more probability mass accumulates towards the smaller cumu-
lative infection counts. This explains why interventions appear to do worse than no
intervention at smaller values of cumulative case count. Even though this figure uti-
lizes a targeted rollout vaccination strategy the same relationship holds for random
vaccination strategies.

3.3 ValidationVia Simulations

The simulations shown in Fig. 3b and d used to validate the theoretical frameworkwere
performed using an event-driven, continuous-time approach on 150 distinct networks
of 20,000 nodes with 500 simulations run on each network. This totals to 75,000
simulations per validation.

The analytical distributions of infection under different vaccination strategies cap-
ture the relationships between generations of infection, but tend to overestimate the
number of cumulative infections compared to the continuous-time simulations. This
is due to a few factors; primarily, the finite-size effects of simulations on networks
with 20,000 nodes, which support faster computational time but results in a sharper
decrease in the size of epidemic generations than are captured by the branching process
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model, as discussed in Ref. Allen et al. (2022). Nonetheless, the important behavior of
the distributions are captured in relation to one another, and across different vaccina-
tion strategies, allowing for comparison and ranking of the effects between strategies
regardless of slight numerical precision errors.

Another source of discrepancy between themodel and continuous-time simulations
is the inability of the model to account precisely for already-infected nodes by the
time of an intervention. This quantity is estimated in Eq. (16), but may result in slight
differences to the continuous-time simulations under which nodes who are already
infected or recovered and are identified for targeted vaccination are not excluded, and
are just ignored. This problem arisesmore for targeted vaccination efforts than random,
since nodes in the targeted high-degree classes are the same nodes that are likely to
have been infected early in the spreading process. The results observed in simulation
may experience a reduced disease burden on the population than the theoretical model
which assumes an infinite supply of these high-degree nodes, because the simulation on
a finite network has already burned through its supply of high-degree nodes, rendering
them recovered before the vaccination intervention.

3.4 Comparison of Interventions

A simple comparison for differing interventions is a direct comparison of their cumu-
lative probability distributions at a specific generation. Beyond this, there are metrics
derived from the cumulative probability distributions that provide valuable informa-
tion for decision makers.
Average cases
First, we look at the expected number of cases over time, which we can denote as
X g
mean . This corresponds to the typical approach using deterministic models that track

the expected state of epidemics. Mathematically, this is defined by

X g
mean =

∞∑

s=1

s∑

m=0

sψg
sm =

∞∑

s=1

sψg
s , (22)

where ψ
g
s is the probability of s cumulative infections up to generation g.

Best - worst case
The second metric looks at the worst-case scenario over time as a measure of the
underlying heterogeneity of possible epidemic sizes. This allows us to quantify what
is the largest epidemic that has a realistic probability of occurring (set by some thresh-
old probability, pt ) and therefore to select policies that offer the “best worst-case
scenario” for robust decision making (Lempert et al. 2010). We derived this metric,
denoted by X g

worst , by determining the corresponding cumulative case value, s′, that
has probability pt . Mathematically this means,

X g
worst = argmin

s′

{∣∣∣∣
∞∑

s=s′
ψ

g
s − pt

∣∣∣∣

}
. (23)
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Critical level of cases
For the third metric, we look at the probability of being at or above a critical level
of cases, c, defined by Pg

f lat . This metric is meant to capture the common goal of
flattening the curve to avoid overwhelming the healthcare system (Block et al. 2020).
From the cumulative probability distribution for cases, we derive

Pg
f lat =

∞∑

s=c

ψ
g
s . (24)

Minimal effect
Finally, we have ametric that measures the probability that a realization of an epidemic
with an intervention is actually worse than a realization of the same epidemic in the
same population without the intervention, Pg

worse. This summary statistic is meant to
capture the fact that some interventions might have minimal effect on the expected
spread of the disease which can easily be overshadowed by the intrinsic randomness
of epidemics. Mathematically we define this as

Pg
worse =

∞∑

s=1

ψ̄
g
s χ

g
s , (25)

where ψ̄
g
s is the probability of s cumulative caseswhen an intervention is implemented,

and where χ
g
s = ∑s

i=1 ψ
g
s the probability of having less than or equal to s cumulative

cases when there is no intervention implemented.
All of the metrics above provide varying emphasis on the information from the

probability distributions for cumulative cases.

4 Case Study: Random vs Targeted Vaccination

Given multiple vaccination strategies, choosing the best strategy involves comparing
the impacts on the epidemic spreading process given some comparison criteria.

One could compare the random rollout strategy against targeted rollout strategy in
Fig. 3b and d. However, given the infinite distributions computed, we cannot see much
of a difference in later generations between the two strategies unless we display more
than 400 cumulative infections. This is also due to the fact that is showcased in Fig. 4,
where the distributions could cross over each other past 400 cumulative infections.

When deciding on the best course of action and only considering the probability
distributions for cumulative case counts, our results depict similar outcomes for a
random and targeted vaccination strategy. With the same percentage of the population
vaccinated, targeted rollout scheme proves slightly more effective, when focusing on
larger cumulative cases in generations 2, 4 and 6. If the goal is to stop the spread of a
disease early on, say by generation 6, a targeted rollout with a high percentage (Vg)
per generation used at the given intervention generations needs to be implemented
according to this model. This is only an example of a strategy determined by the
distributions of cumulative cases. Other calculations can be performed on probability

123



  118 Page 16 of 20 M. C. Boudreau et al.

Fig. 5 Varying targeted vaccination metrics compared to two random vaccination metrics. Given 0.10, 0.25,
0.50, 0.75, 1.00, and 1.25% targeted rollouts per generation (rollout occurring at generations 4, 6, 8, and
10) cumulative case probability distributions, the metrics defined in Sect. 3 are computed and along with
the metric for a random rollout at 3.0% (dash-dot line) and 5.0% (dash-dash line). The differing colors of
the makers represent whether the given targeted rollout is worse than, in between, or better than the two
random rollouts, as shown in the legend. The threshold for the best-worst case metric is 10−4. The critical
level of cases is defined as 500 cases (Color figure online)

distributions of cumulative cases, which can inform decision makers on different
courses of action, depending on desired goals in the beginning stages of an epidemic.

In the previous paragraphs, a comparison of distributions provides an overall com-
parison, however, we are able to calculate other metrics of comparison for differing
vaccination strategies. The metrics defined in Sect. 3 appear in Fig. 5, which displays
all of themetrics for targeted rollout with six different vaccination percentages ranging
between 0.1 and 1.25%. Thus there are six different cumulative vaccination strategies
represented in the figure. These percentages are applied to generations 4, 6, 8, and 10,
hence total proportion vaccinated is cumulative; e.g. in the 0.1% case, 0.4% of the

123



Temporal and Probabilistic Comparisons... Page 17 of 20   118 

population will be vaccinated at generation 10. The horizontal lines represent random
rollout vaccinations at 3.0% and 5.0%, which were rolled out at the same generations
as the targeted strategy.

Figure 5 depicts a decrease in each metrics quantities as the percentage increases
for a targeted rollout. For each metric, we observe that targeted vaccination with a
0.1% at each rollout generation as the only percentage that provides higher cases and
probabilities for all the metrics of both random rollout strategies. All of the metrics are
on varying scales, yet each one follows the decreasing trend as stronger targeted roll-
outs are applied. The scales for between generation 5 and 10 are drastically different
as well, showing how a targeted vaccination increase of 0.25% drops the given sum-
mary statistic much more in generation 10 than generation 5. The 0.1% and 0.25%
targeted rollout metrics are larger than the 5.0% random rollouts for almost all the
measures at generation 10, however, the difference in resources between vaccinating
a total of 0.4% or 1.0% is much smaller than vaccinating a total of 15% or 25% of
the population to have a similar effect. The 0.5% and 0.75% targeted rollouts sit in
the region between the two random rollouts for all the measures at generation 5. At
generation 10, all of the metrics have the top three strongest targeted rollouts below
both random vaccination strategies, along with the random vaccination lines moving
closer together on their given scales. We can even see the random vaccination lines
being virtually the same at generation 10 given the scale of the number of cases. These
calculations allow for decision makers to evaluate what strategy will best achieve their
prioritized goal during an outbreak.

Overall, we find that there are three important factors influencing how fast a tar-
geted rolloutmust be to outperform a faster random rollout. First, the answer obviously
depends on the speed of the random rollout itself. This intuitively makes sense due to
the nature of targeted vaccination focusing on the individuals with the most connec-
tions. Second, it also depends on the desired temporal window: A targeted rollout of
0.75% per generation performed worse than a 5% random rollout per generation in
all metrics at generation 5, but outperformed in all metrics by generation 10. Third,
the preferred metrics of performance also influences the evaluation of interventions:
Compared to a random rollout of 5% per generation, a targeted rollout of 0.75% per
generation minimizes all the metrics. However, one should always consider relative
differences between random and targeted rollouts to fully inform decision making.

5 Discussion

Once a decision has been made on whether or not to implement an intervention,
the question of which strategy to use arises. Without a comparison of intervention
strategies, decision makers may be lead to choose a scheme that does not mitigate
the greatest concerns of their communities. Given the analytical derivations from this
work, it is apparent that a targeted vaccination strategy has a faster impact on the spread
of disease than a random vaccination strategy. The choice between a single instance
intervention and a rollout of interventions depends on the resources of the community
under consideration. Some of the vaccination strategies that only intervene in one
generation may not be feasible because there is simply not enough time to vaccinate
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0.15% of the population during a generational window, let alone 3.0% for multiple
windows. This fact, along with the difficulty of determining the superspreading events
in a community, makes targeted vaccination harder to coordinate than random. The
relative costs of different strategies and which strategy makes the most sense in terms
of resources and time is not within the scope of this paper, but are important aspects
for public health officials to consider.

Although this work does not evaluate all the intricate parts of implementing var-
ious intervention strategies, it successfully captures the stochastic nature of disease
spread and the heterogeneity of contact patterns and human behaviors. Due to its
generational time aspect, this temporal and stochastic model removes some of the
assumptions in other forecasting models, which aim to derive random disease spread,
along with the impediments to the spread, over time. Another advantage to this ana-
lytical model is the transmission expression defined in Sect. 2.3 has the flexibility
to accommodate intervention strategies other than uniform or network interventions.
Equations (14) and (15) can accommodate interventions such as treatment and trans-
mission based interventions. Values for γ could depend on therapeutics, or a number
of other types of treatments while values for β could depend on masking, ventilation
improvements, social distancing, or testing. Altogether, Eq. (16) provides a flexible
approximation to account for multiple interventions, and even combinations of inter-
ventions, in probabilistic forecasts. Comparing interventions is a multidimensional
problems, and therefore so is the design of interventions. Future work should include
testing other intervention strategies, along with combining multiple strategies as we
have seen happen around the world. Public health tools and forecasts need to be as
heterogeneous and complex as the epidemics they aim to control.
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