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Hyperbolic models are known to produce networks with properties observed empirically in most
network datasets, including heavy-tailed degree distribution, high clustering, and hierarchical
structures. As a result, several embedding algorithms have been proposed to invert thesemodels and
assign hyperbolic coordinates to network data. Current algorithms for finding these coordinates,
however, do not quantify uncertainty in the inferred coordinates. We present BIGUE, a Markov chain
Monte Carlo (MCMC) algorithm that samples the posterior distribution of a Bayesian hyperbolic
randomgraphmodel.Weshow that the samples are consistentwith current algorithmswhile providing
added credible intervals for the coordinates and all network properties. We also show that some
networks admit two ormore plausible embeddings, a feature that an optimization algorithm can easily
overlook.

Embedding enables us to comprehend abstract objects and conduct rigor-
ous quantitative analyses of their similarities, differences, and structural
characteristics. In the complex network context, embeddings usually consist
of vertex coordinates in a latent space. A rich literature has shown that
embedding in hyperbolic spaces1, in particular, can visually emphasize the
important parts of large networks2, but also, when used as the basis for a
random graph model, naturally reproduce many common network
properties such as the community structure3–9, a power-law degree
distribution10,11, a non-vanishing clustering coefficient10–15, a fractal
structure16–18 and the sparsity of connections14. Furthermore, since hyper-
bolic geometry closely approximates the shortest paths of graphs via
geodesics10,19, hyperbolic embeddings have been used to design efficient
routing protocols20,21.

Considerable effort has gone into representing a given graph using
latent spaces22–26. Many studies focus on placing the vertices such that the
graph distance between the vertices is closely approximated by the hyper-
bolic geodesics27–31. From this perspective, trees32 can be embedded in
hyperbolic space up to an arbitrarily small error, enabling perfect greedy
routing. This is due to the exponentially growing volume in the hyperbolic
space,which canbe related to the branching factor of trees10. The embedding
task was also tackled with dimension reduction techniques from machine
learning26,33–35 and with the maximum likelihood estimation of various
hyperbolic random graph models20,36–45. Other methods allow the embed-
ding of directed graphs46–48, weighted graphs49,50 and graphs to the D-
dimensional hyperbolic space with51 or without vertex features52.

Existingmethods have, however, largely overlooked uncertainty: They
return a single embeddingwithout allowance for error or acknowledging the

existence of other solutions. Yet, this information is crucial as perturbations
to the embedding affect edge prediction53 and can lead to different graph
representations.

As a first step towards addressing this problem, we propose a Bayesian
embedding algorithm that quantifies uncertainty rigorously. Related
methods have proven useful in network science, where they have been used
to reconstruct networks from noisymeasurements54,55, predict the existence
of edges56, infer higher-order interactions from network data57 and pairwise
observations58, and perform community detection59,60.

Our proposed algorithm, BIGUE (Bayesian Inference of a Graph’s
Unknown Embedding), uses Markov chain Monte Carlo (MCMC) sam-
pling to generate embeddings compatible with a giv en graph; see Fig. 1.We
show how these samples can be used to calculate credible intervals, inter-
preted as error bars, for vertex positions, properties of the embedding, and
model parameters. We also show that many qualitatively different
embeddings are often compatible with an observed graph—a phenomenon
known as multimodality.

Bayesian approaches hyperbolic embeddings of networks have already
been studied61, but the results therein suggest that the proposed MCMC
algorithm has poor mixing—a common problem many MCMC methods
face when the posterior distribution is complex and multimodal62–70. We
identify community structure9 as a source ofmultimodality and introduce a
set of cluster-based transformations to improve the exploration of the
posterior distribution. Our approach draws on previous literature in which
community structure was used to guide greedy embedding algorithms44,71.
We show that these transformations drastically improve the mixing of the
MCMCalgorithm, even if the community structure is weak. In doing so, we
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make a tradeoff between speed and accuracy—greedymethods find a single
solution rapidly, while our MCMC methods explore a large space more
slowly. In fact, our implementation of BIGUE does not scale well beyond a
few hundred vertices. Thad said we show that the cluster transformations
powering BIGUE improve mixing and thus make it more scalable than
alternative MCMC algorithms. Furthermore, we provide evidence that the
posterior distributions of hyperbolic graph models are not Gaussian in
practice, thereby motivating the need for MCMC as opposed to faster but
less accurate methods like variational inference.

Methods
Bayesian hyperbolic embedding
The Bayesian framework aims to infer parameters—here the embedding—
from some data—the graph. In this section, we define the likelihood and
prior distributions that lead to the posterior of the model, and highlight
unique challenges that do not arise when searching for a single embedding.

Model definition. Let G = (V, E) be the graph we aim to embed, with V
and E being the sets of its vertices and of its edges, respectively. Let G be
the random graph used to perform the embedding. We use the circular
probabilistic model S1 to describe the graphG15; it is nearly equivalent to
the hyperbolic plane modelH210 (see Supplementary Note 2), but it will
turn out to facilitate inference. In the S1 model, the probability that an
edge (u, v) exists between vertices u and v is a function of the angular
coordinates θ ¼ ðθwÞw2V of the vertices where each θw 2 �π; π½ Þ, of the
parameters κ ¼ ðκwÞw2V where κw > 0 controls the degree of vertexw, and
of an inverse temperature β > 1 which controls the amount of clustering.
This probability is defined as

P½auv ¼ 1jθ; κ; β� ¼ 1þ dðθu; θvÞ
μκuκv

� �β
 !�1

; ð1Þ

where auv = avu, u ≠ v, is any element of the adjacency matrix of a graph
realized byG,d(θu, θv) =RΔ(θu, θv) is the arc lengthbetween vertices u and v,
Δ(θu, θv) = π− ∣π− ∣θu− θv∣∣ is the angular separation, andR= ∣V∣/2π is the
radius of the circle on which vertices are embedded. We fix the constant
μ ¼ β sinðπ=βÞ=ð2πE½~κ�Þ so that the parameters κ match the degrees
E½Kjκ� ¼ κ in expectation in the limit of large graphs, where ~κ represents
the randomvariable for the parameter κw of any vertexw (they are i.i.d.) and
K∣κ is the random degree of a vertex of parameter κ when all vertices are
independently and uniformly distributed on the circle10. These choices forR
and μ are without lost of generality.

The complete graph ismodeledusing conditional independence for the
edges, leading to the likelihood

P½G ¼ Gjθ; κ; β� ¼
Y

ðu;vÞ2EP½auv ¼ 1jθ; κ; β�
×
Y

ðu;vÞ=2E
ð1�P½auv ¼ 1jθ; κ; β�Þ

¼
Y

ðu;vÞ2V2
1þ dðθu; θvÞ

μκuκv

� �β±
uv

 !�1

;

ð2Þ

where V2 is the set of all combinations of two vertices, and β ±
uv equals β if

auv = 1 and equals − β otherwise.
Applying Bayes’ rule yields the following posterior density for the

embedding (i.e., angular coordinates and parameters)

pðθ; κ; βjGÞ ¼ P½G ¼ Gjθ; κ; β�pðθ; κ; βÞ
P½G ¼ G� : ð3Þ

The likelihood P½G ¼ Gjθ; κ; β� is given by Eq. (2). To complete the spe-
cification of Eq. (3), we use independent prior densities

pðθ; κ; βÞ ¼ pðβÞ
Y
w2V

pðκwÞpðθwÞ; ð4Þ

for ease of modeling, though our sampling algorithm does not depend on
this simplifying assumption. Previous literature has shown that inverse
temperatures are typically small; we thus choose a truncated half-normal
distribution for β,

pðβÞ / 1½β > 1� exp � ðβ� β0Þ2
2σ2

� �
ð5Þ

with β0 = 3 and σ= 2, andwhere 1½�� is the indicator function (equals 1 is its
argument is true, and 0 otherwise). Since known networks tend to have a
heavy-tailed degree distribution, we use a half-Cauchy prior

pðκwÞ / 1½κw > ε�
2

πγ 1þ ðκw=γÞ2
� � ; 8w 2 V ð6Þ

with γ = 4 and ε = 10−10; this allows for large variations in the estimated
values of κ. Finally, because the angular coordinates are defined on a
bounded spaceandwedonotwant to favor an embedding direction apriori,
we use a uniform prior

pðθwÞ ¼
1
2π

ð7Þ

except for the two vertices with the highest degree, whose position is
restricted (the reason is technical and has to do with avoiding degeneracy in
the posterior; see below). With these choices, the posterior distribution is
proper and can express correlations between the parameters even if the
priors are independent. The normalization constant P½G ¼ G� can be
obtained by integration in principle, though it is not needed here; see the
Sampling section below.

Fig. 1 | Probabilistic hyperbolic embedding of a synthetic graph with BIGUE.
Hyperbolic coordinates are obtained using a transformation between theH2 and the
S1 models described in SupplementaryNote 2. Black points and dark-colored points
are themedian coordinates of each vertex. Light-colored points are the 2000 sampled
positions for the three highlighted vertices. Lines are edges drawn using hyperbolic
geodesics. The synthetic graph of 30 vertices is generatedwith theS1 likelihood, with
angular coordinates drawn from their prior, β = 2.5 and the κ parameters drawn
from a Pareto distribution of exponent − 2.5 truncated over the interval (4, 10).
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Symmetries and automorphisms. The S1 model exhibits fundamental
symmetries that give rise to identifiability problems. While these sym-
metries are often overlooked when using maximization algorithms
(which produce single solutions), they must be addressed in the Bayesian
context. Indeed, our goal is to compute a distribution over embeddings,
requiring us to distinguish between embeddings that differ merely by
trivial reparametrizations (such as coordinate rotations) and those that
represent genuinely distinct configurations. In this section, we examine
the two classes of symmetries inherent in the model and present our
approach for handling them.

First, the model inherits the symmetries of the circle S1. Since the
distance d is invariant to rotations and reflections θw↦− θw ∀w, the edge
probabilities are preserved in the likelihood, and an infinite number of
equivalent embeddings exist.Maximizationalgorithmsbreak this symmetry
at random, but we need to proceed with more caution when we move to a
distribution over embedding. Without loss of generality, we fix the angular
coordinate of the highest-degree vertex u to θu = 0 to handle rotational
symmetries. We remove the reflection symmetry by restricting the angular
coordinate of the second highest-degree vertex v to θv ∈ [0, π].

Second, a graph is inherently labeled by its vertices, but any vertex
relabelling that preserves the edges—an automorphism—leaves the like-
lihood invariant since the distances between connected and unconnected
vertices are unchanged. For example, if a transformation u↔ v exists such
that each (u,w)∈E⇔ (v,w)∈E for any vertexwother thanu and v, thenwe
can also exchange κu ↔ κv and θu ↔ θv to preserve the likelihood.

The automorphisms cannot easily be avoided in the model and while
the restrictionon thehighest-degreevertices helpswith sampling, it does not
guarantee an optimal compatibility between the embeddings. For instance,
fixingθu=0 implies nouncertaintyonθu and restricting some v toθv∈ [0,π]
can affect ∣V∣ − 2 vertices instead of only θv. To have the most coherent
embedding sample, we opt for a post-processing alignment where we
minimize the sum of squared angular separations to some arbitrary refer-
ence embedding over the automorphisms found using Nauty72, the two
possible reflections (reflection or no reflection) and the rotations 0; 2π½ Þ.

In what follows, we will compare the embeddings obtained using this
Bayesian frameworkwith the ones obtainedusingMercator36—a coordinate
ascent algorithm that maximizes the Eq. (2). When embedding synthetic
graphs generated with the S1 model, we will also use the original input
parameters (θ, κ, β) as the “ground truth” embedding.

Sampling
With the model in place, we can now generate embeddings by calculating
expectations over the posterior density of Eq. (3). For example, the expected
position of a vertex can be calculated as

E½ΘujG ¼ G� ¼
Z

θu pðθ; κ; βjGÞ dθ dκ dβ; ð8Þ

where Θu is the random variable of the angular position of vertex u, and
similar integrals can be defined for all quantities of interests, like confidence
interval for the positions. However, these integrals have, as far as we can tell,
no closed-form solution, and we thus turn to sampling approximations
computed using Markov Chain Monte Carlo (MCMC) algorithms. These
algorithms tend to be slow (see Supplementary Note 1 for a discussion), but
we show in the Multimodality section below that there is evidence for their
necessity to adequately tackle this problem.

Unfortunately, we have found that standard MCMC algorithms are
not well-adapted to the S1 model. Indeed, for most graphs G, the posterior
distribution has a complicated geometry defined by several steep barriers
that separate the posterior distribution in a multitude of small regions. This
is the case even for a small graph of 30 vertices, as Fig. 2 shows:Changing the
embedding coordinate of a single vertex revealsmultiple localmaximaof the
likelihood (and thus posterior density). Themodel predicts that two vertices
with nearby embedding coordinates should be connected with high prob-
ability. In the extreme case where two disconnected vertices have the same

angular coordinate, the likelihood approaches 0, causing the sharp dips
shown in the Figure. Furthermore, the gradients are undefined due to their
dependenceon the distance function inEq. (1). Since theposterior geometry
isfilledwith these barriers for sparse and large graphs (the numberofmodes
increases with the number of disconnected pairs of vertices), hyperbolic
embedding can be challenging for standard MCMC algorithms.

In what follows, we first shows that both a simple random walk algo-
rithm and a sophisticated gradient-based algorithm cannot adequately
sample the posterior of a small graph as a result. Then, we demonstrate that
our proposed algorithm, BIGUE, can avoid this problem by supplementing
cluster-based transformations to a random walk.

Baseline algorithms. We first tested a naive randomwalkMCMC (RW)
algorithm (details in Supplementary Methods 1) on a small synthetic
graph with known ground truth embedding coordinates (shown in
Fig. 1). We quantified our results using the normalized autocovariance,
the effective number of samples Seff, and R̂—a measure of mixing (see
Supplementary Methods 2 for details). Furthermore, we tested con-
vergence by initializing the algorithm (i) at the ground truth and (ii) with
a simple initialization strategy that can be applied to observational data.
Figure 3 illustrates that the RW has a high normalized autocovariance
and it very slowly reaches the typical set—the part of the distribution that
holds a significant probability mass and where good algorithms should
naturally spend most of their time73.

For our second test, we wrote the model in Stan, a probabilistic pro-
gramming language that implements a dynamic HamiltonianMonte Carlo
(HMC) algorithm74 for sampling from arbitrary Bayesianmodels. Dynamic
HMC runs slowly because each sampling iteration involves integrating a
large system of differential equations. Nonetheless, the promise of high-
quality samples makes this option worth exploring.

Unfortunately, the barriers shown in Fig. 2 are problematic for a purely
gradient-based method such as HMC, and Stan indeed reports gradient
divergences, which signal incorrect sampling. This issue can be partially
mitigated by using an approximate likelihood (described in Supplementary
Note 3) that smoothens these barriers at the cost of a slightly distorted
posterior. However, even with this modification, the algorithm is unable to
explore the sampling space sufficiently fast (we reach the maximum tree
depth easily74).

Stan’s default parameters can be modified to allow for better
exploration (increased tree depth), but even then, a critical problemremains

Fig. 2 | Log-likelihood of themodel when a single vertex ismoved along the circle.
Each dip is a divergence that occurs when a vertex is positioned at the same position
as a disconnected vertex. These divergences form barriers in the objective function
landscape (log-likelihood, posterior distribution), which is one of the reasons why
hyperbolic embedding is a difficult problem. The likelihood is computed on the
ground truth embedding of the synthetic graph of Fig. 1. Colors indicate the degree
of the moved vertex (lowest degree in light blue, median degree in blue and highest
degree in dark blue).
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and seems insurmountable: after a large number of iterations, the sampled
distributiondiffers dependingon the initialization, a signal that themixing is
poor; see Fig. 3. Initializations at the ground truth yield samples of higher
quality than the RW, but random initializations do not converge to the
typical set even after 200,000 iterations. Thismixing issue is likely caused by
the complicated and non-convex geometry of the posterior distribution,
which motivates the modifications we propose next.

Cluster transformation MCMC. We can improve upon dynamic HMC
and RW by noticing that the connection probability is a decreasing
function of the angular separation, such that groups of vertices at a large
enough distance from one another are essentially independent. As a
result, each region is akin to a smaller and simpler embedding problem,
which is the basis for the approach ofWang et al.44,71. (This is also the basis
for the idea of renormalization in the H2 hyperbolic model in which
groups of vertices are coarse-grained while partially preserving the
structural integrity of the graph1,17.) Recalling that the likelihood is
invariant to reflections and rotations, we propose to apply these trans-
formations at the level of groups or clusters of vertices; c.f. Fig. 4.

The first step for these transformations is to partition vertices into
roughly independent clusters given the angular positions. This is done by
grouping vertices with an angular separation below some randomly sam-
pled threshold in clusters. We use this naive partitioning scheme instead of
an optimization procedure (e.g. modularity maximization75) for technical
reasons discussed in Supplementary Methods 1.

Once we have selected clusters, we apply one of the following trans-
formations. The first transformation, named flip, applies a reflection on the
vertices of the selected cluster. The second transformation, exchange, swaps
the relative positions of two selected clusters. The third transformation,
translate,moves thefirst selected cluster to the relativepositionof the second
cluster. The first transformation explores local reflection symmetries, while
the two others explore rotation symmetries. In each case we select the
involved cluster(s) uniformly at random from all clusters.

Our proposed algorithm, BIGUE, combines these random cluster
transformations (CT) with the random walk (RW) baseline. Cluster
transformations explore the mesoscale structure of the embedding, while
the random walk fine-tunes the embedding coordinates, including the
parameters κ. Each sampling iteration is either a randomly selected CT or a
RW, and we calibrate the transition probabilities to the posterior distribu-
tion using the Metropolis-Hastings algorithm; see Supplementary Meth-
ods 1 for the technical details. (One could also combine random cluster
transformations with dynamic HMC, but the high computational cost of
dynamic HMC turns out to outweigh its benefits. A naive random walk
provides cheaper and sufficient fine-tuning in our experiments).

Figure 3 shows that BIGUE has the lowest autocovariance and reaches
the typical set faster the other algorithms.Thefluctuations at equilibriumare
also larger, which suggests that it explores the posterior more efficiently.
Furthermore, BIGUE’s maximum potential reduction factor R̂max is the

Fig. 3 | Statistics of Markov chain Monte Carlo algorithms when embedding the
synthetic graph of Fig. 1. Results for the random walk algorithm (RW) and for our
method (BIGUE) that uses both cluster transformations and a random walk (RW
+CT) are displayed in red and blue, respectively. The orange curves show the results
for dynamic Hamiltonian Monte Carlo (HMC) for the differentiable S1 model
described in Supplementary Note 3. The green line displays the maximum log-
likelihood obtained fromMercator after 10 runs, each with 10 refinements36 and the
black line is the ground truth embedding’s log-likelihood. a Normalized auto-
covariance averaged over all parameters and chains at different lags. b, cTraceplot of
log-likelihood of a simulated Markov chain initialized without (b) and with (c)
access to ground truth information.When the ground truth is unknown,we initialize
κu = deg (u) and draw the other parameters from their priors. d Traceplot of log-
likelihood of aMarkov chain after thinning the chain shown in panel b. The blue line
of this panel is the sample shown in Fig. 1. In each case, we compute R̂max, the
maximum potential scale reduction factor for all parameters after the iterations
removed from the warm-up (grey part of traceplots)—values close to 1 are desirable.
Four independent chains were simulated to compute R̂ (shown on each panel with
the color corresponding to the sampling algorithm) and the autocovariance, but only
one is displayed (representative of the four).

Fig. 4 | Summary of the cluster transformations used in BIGUE. The flip trans-
formation targets the reflection symmetries, and the exchange and translate trans-
formations target the rotation symmetries.
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lowest, suggesting that it has better mixing. However, the three algorithms
yield R̂ values above the recommended 1.01 threshold76.

A directfix to high normalized autocovariance and potential reduction
factor is to thin the chains, that is, only use every k-th sample point of the
chain. Guided by Fig. 3a, we set k = 10, 000 for BIGUE and the RW and
obtain the chains of panel d. We now see that BIGUE’s chains have
R̂max<1:01 while those of the RW do not. Moreover, the fluctuations of the
RW are still smaller, indicating, again, that the sampling space is better
explored by BIGUE.

From the samples of Fig. 3, we also compute the effective sample size
of the chains, which is related to the estimation error in the Markov
Chain central limit theorem. The median effective sample sizes Seff across
all parameters were, for BIGUE: 486, 462, and 1814 (in b–d respectively).
For the random walk MCMC, we obtained medians of Seff = 248, 384,
and 1390, and for dynamic HMC, they were equal to 593 and 347.
This provides further evidence that cluster transformation benefit
the random walk algorithm. Autocovariance, R̂ and Seff and their
adaptation to periodic random variables are explained in Supplementary
Methods 2.

In light of these simulations, we conclude that BIGUE outperforms
both dynamic HMC and the RW in all metrics, and that in general, we
expect these algorithms to perform equivalently to BIGUE at best. For this
reason, the remainder of the paper uses BIGUE to sample the posterior
distribution.

It may seem surprising that BIGUE relies on clusters in the embedding
while the vertices are uniformly distributed according to prior density of the
generativemodel. However, the clusters foundneed not bewell separated to
be useful in sampling. This is due to the locality of connections: If somepairs
of vertices are sufficiently distant, then we can reasonably attempt to
separate these vertices as they might not be connected anyway. Conversely,
vertices that are closeby in the best embeddingwill tend to be connected and
can thus be moved as a unit instead of one at a time.

We note that Fig. 3 highlights one counterintuitive aspect of con-
tinuous random variables73: The neighborhood of the likelihood max-
imum accounts for a small fraction of the probability mass because
probabilities are obtained through integration with respect to the
Lebesgue measure. While the log-likelihood maximum (found by Mer-
cator) has a high probability density, its surroundings cover a larger
volume (the typical set) and hold a much larger probability mass. Hence,
our MCMC sample concentrates away from the maximum likelihood, as
expected. (That said, we note that cluster transformations could easily be
added to maximization routines if a point estimate was the goal, some-
thing we leave for future work).

Results
Having a reliable algorithm to sample embeddings from the posterior dis-
tribution, we can now estimate embeddings and integrals like Eq. (8). This
section illustrates how the resulting Bayesian approach compares to max-
imum likelihood estimationbothona synthetic graphandvarious empirical
networks.

Embedding and network properties
We first compare our Bayesian model to Mercator on the synthetic graph
used in Fig. 3. Figure 5 shows what such an analysis might look like, using
credible intervals for the embedding coordinates and their transformations,
computed with samples drawn from the chains depicted in Fig. 3d.

We see in Fig. 5a that Mercator’s estimation generally lies within the
estimated credible intervals, revealing some leeway in the coordinates
compatible with the dataG. The ground truth value is sometimes notwithin
the interval because the graph is small (see Supplementary Fig. 1, where the
graph contains 100 vertices, and the coordinates are recovered almost
perfectly).As expected, formost verticesu, theκuparameters concentrate on
the vertices’ original degrees (Fig. 5b), but there are discrepancies. Note that
the relationship E½Kjκu� ¼ degðuÞ, mentioned in the Model definition
section, is valid assuming an infinite number of vertices. This is why, for a

high-degree vertex u in a small graph, κu is larger to compensate for the fact
that there is a finite number of vertices. Figure 5c also shows that the
posterior covers the original β value, although it is in a somewhat low
probability region. The posterior distribution agrees with Mercator and
places a higher likelihood than the ground truth on β being a bit under 2—

Fig. 5 | Posterior estimates and posterior predictive distribution for the synthetic
graph used in Fig. 3. aAngular coordinates θ. b Parameters κ. c Inverse temperature
β. d Density. e Clustering (the transitivity). f Greedy routing success rate. g Global
hierarchy level77. h Normalized rank of the removed edges' existence probability
among all the unconnected pairs (see below). In each case, 2000 total embeddings
were sampled from four independent chains. All shades of blue, green and gray
display the values for the posterior sample, Mercator and the ground truth,
respectively. In panels (a, b), points denote the median, and the error bars cover the
interquartile range. In panels (c–g), the vertical dotted lines show point estimates
computed with the Mercator and ground truth embeddings. In panels (d, e), we
generated graph samples for Mercator and the ground truth by conditioning the
model’s likelihood on point estimates of the embedding. In panels (c, f, g), the blue
dashed line is the median of the posterior sample. In (h), we test the algorithm on a
link prediction task91, and report the rank of removed edges as predicted by the
likelihood. Pairs of embedding and graphs of 30 vertices were sampled from the
prior. For each graph, 5% of the edges were then randomly removed (4 to 5 edges),
and the normalized ranks of removed edges were calculated and binned. (Dis-
connected graphs were rejected for compatibility withMercator). The figure reports
the median and interquartile range of the normalized rank frequencies calculated
across graphs, removals, and samples. The AUC values are shown in Supplemen-
tary Note 5.
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this is due to random fluctuations in the instantiation of G conditioned on
the ground truth coordinates.

Next, we turn to the properties of the graph. The edge probabilities
of good embeddings should yield graphs with properties similar to those
of the original graph. As a result, if the embedding is accurate, we expect
that the graphs generated with estimated coordinates will be similar to
the original graph. We first verify this with the maximum likelihood
found with Mercator; the resulting distribution of graph properties is
centered around the observed graph in Fig. 5d, e. We note that although
Mercator yields a point-wise estimation, different graphs can be sampled
from the same embedding, which explains why there are many density
and clustering values for Mercator. With BIGUE, each sample point
corresponds to a random graph using the likelihood, and consequently,
we can marginalize the graph properties over a much larger parameter
space. (Formally, we draw from the posterior predictive distribution of
the model.) The resulting distributions are wider and now capture
parameter uncertainty; see Fig. 5d, e.

The embeddings also capture less obvious properties. For example,
hyperbolic embeddings can play a role in finding effective and efficient
greedy routingon thenetwork. In the greedy routing algorithm10, hyperbolic
coordinates act as addresses, and one attempts to reach the target v from a
sourceuby repeatedly following the edge that leads to theneighbor closest to
the destinationu (in hyperbolic space). Themain issuewith this algorithm is
that paths can sometimes devolve into “greedy loops” that lead nowhere.
The greedy success rate evaluates the extent to which this is an issue as the
proportion of greedy routes that successfully reach their destination. The
posterior sample allows us to compute error bars on the greedy success rate,
but also to comment the navigability of the ensemble of plausible embed-
dings. For instance, Fig. 5f shows that, while many embeddings are as
navigable as the embedding inferred by Mercator, the majority of plausible
embeddings are less reliable.

The hierarchical organization of graphs is another example of complex
properties captured by hyperbolic embeddings. The global hierarchy level
was introduced to quantify this, using a function of the angular distance
between neighboring vertices with coordinates in the outer and inner parts
of the embedding77. Figure 5g illustrates how, for the synthetic graph ana-
lyzed, most plausible embeddings have smaller global hierarchy levels than
both the ground truth and the Mercator embeddings.

Finally, embeddings for the S1 model can be viewed as classifiers for
edges since the likelihood maps potential edges (binary classes) to edge
probabilities. If the embedding is a good representation of the graph, edges
should have a high probability, while non-edges should have a low prob-
ability. We test the performance in the edge prediction task by generating
many embeddings and synthetic graphs of 30 vertices and removing 5% of
its edges. We then compute the rank of the removed edges among all the
unconnectedpairs, using their inferred connectionprobability, Eq. (1). If the
removed edges still have a relative high existenceprobability, the embedding
is a good predictor and the ranks should approach 1. Figure 5h shows that
Mercator and BIGUE perform almost identically and, unsurprisingly, the
original embeddingperformsbetter. This suggests that both embeddings are
robust to small perturbations.

Multimodality
Next, we inspect the properties of the posterior distribution of coordi-
nates in more detail. MCMC algorithms are computationally expensive,
and one might wonder if we could do away with sampling altogether—be
it HMC, BIGUE, or another algorithm—by quantifying uncertainty with
Laplace’s approximation or a variational approach78 instead. These
approximations are attractive because they yield error bars for all
quantities nearly for free, and they have strong theoretical backing, e.g.,
the Bernstein-von Mises theorem that guarantees convergence to the
approximated distribution in the big data regime under certain condi-
tions. Unfortunately, for small graphs and S1, at the very least, we find
that the posterior distributions are not multivariate normal distributions
and that MCMC is truly necessary.

Treating our sample as truly representative of the posterior distribu-
tion, we computed the p-values of the Henze-Zirkler normality test79 for all
pairs of parameters. This test compares the empirical characteristic function
to its pointwise limit under the null hypothesis that the data follows a
multivariate normal distribution. We found the largest p-value for this test
to be 1.11 × 10−25 for the example synthetic graph. This is not surprising
when looking at the marginal distribution of the pair of coordinates shown
in Fig. 6a: The bulk of the distribution is skewed, and there is a region of very
low probability mass next to the bulk. All marginalizations of amultivariate
normal yield another multivariate normal; thus, finding one non-normal
marginal is enough to reject it as a model for the whole.

It could be that only synthetic graphs show non-normal posterior
distributions, but it turns out that the embedding of well-known graphs not
explicitly generated by the model behaves the same way. For example, the
posterior ofZachary’sKarateClub is alsonotnormal: onepair of parameters
has a p-value of 0.092 for theHenze-Zirkler normality test, but the complete
posterior has a p-value of 0 numerically; Fig. 6b shows that joint marginals
for this graph are not ellipsoids.

One of the most compelling pieces of evidence for the non-
normality of hyperbolic embeddings, is the ease with which it can be
induced using a mixture for the embedding coordinates. A simple
procedure that achieves multimodality is as follows. First, we give
random coordinates to the vertices as usual. But when we generate
the edges of G, we use either the original or an updated angular
coordinate for a single vertex u (e.g., θu 7!θu þ 2mod 2π), with
probability 0.5, thereby connecting u to two incompatible sets of
vertices. Figure 6c shows the marginal distribution of two angular
positions for the resulting graph. Neither of these two chosen vertices
is the vertex with a superposition of angular coordinates, yet the
marginal is clearly multimodal. In our experiments, we also found
that almost all joint marginals that include at least one angular

Fig. 6 | Multimodality and non-normality of the posterior distribution.Marginal
posterior distributions are shown for pairs of angular coordinates in the embedding
of (a) the synthetic graph in Fig. 1(b) Zachary’s karate club83(c) a synthetic graph of
30 vertices with two conflicting embeddings, as described in the Multi-
modality section (θ0 has two different ground truth positions). Samples are obtained
with the thinned BIGUE algorithm, and chains comprise 500 random embeddings.
The color of each circle indicates from which chain it was sampled. The black lines
delineate the density of a normal kernel density estimation of the marginal. The
sample averages �θu are circular averages as described in Supplementary Methods 2.
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coordinate are bimodal; a single vertex with an ambiguous position is
sufficient to induce the behavior.

Observational study
To conclude our analysis, we embed a collection of empirical net-
works with BIGUE and contrast our results with Mercator’s; the
experiments are summarized in Fig. 7 (see Supplementary Note 4 for
a table giving numerical values). Both algorithms reproduce the
observed density and clustering (transitivity) of the graph. The
shortest paths average length is also reproduced by both algorithms
except for the Zachary’s karate club and the Dutch literary critics
networks, where both algorithms fail. In these cases, it is likely
that the S1 model cannot offer a good representation altogether. And,
as we have argued above, Mercator yields a single embedding and
thus ignores parameter uncertainty, leading to tighter estimated
intervals.

Properties that only depend on coordinates, like the global
hierarchy level, have no associated ground truth in observational data
and can only be compared across different embedding algorithms.
Except for the macaque neural network, we find that Mercator sys-
tematically yields higher values of the hierarchy than BIGUE’s,
usually by a large margin. This suggests that graphs are less hier-
archical than they might seem if we only had considered the Mer-
cator embedding.

Conclusions
Hyperbolic random graphs are unquestionably useful and can explain
many properties observed in empirical networks, but existing esti-
mation algorithms neglect the significant uncertainty and multi-
modality that can be present in these models, while off-the-shelf
uncertainty quantification methods fall short. We provided evidence
that the dynamic HMC is unable to sample the posterior of a
Bayesian hyperbolic embedding model, and that supplementing
random cluster transformations to a generic random walk is suffi-
cient to sample embeddings of small graphs. While maximum like-
lihood estimators such as Mercator overfit the coordinates and do not
provide error bars on embedding, our algorithm BIGUE provides an
accurate posterior sample for the error bars on the graph and
embedding properties.

As future work, we believe that generalizing cluster transfor-
mation on the D + 1-sphere could be a promising avenue52. While
each additional dimension would increase the computational cost by
adding another parameter per vertex, this tradeoff may be worth-
while. The higher-dimensional space would allow vertices to navigate

around each other more freely, potentially avoiding the barriers
illustrated in Fig. 2.

Another challenge we leave for future work is to improve the
algorithm’s overall computational efficiency. Currently, BIGUE’s main
limitation is its poor scaling with vertex count—it struggles to properly
sample graphs with more than 100 vertices in a reasonable timeframe.
While basic optimizations like GPU-accelerated likelihood calculations
and a more efficient programming language would help, the most pro-
mising speedups may lie in relying on HMC for the adjustment of
positions. Naively using external implementations turned out to be too
costly, but an integrated solution may work well. Other potential speed
improvements include using negative sampling to approximate the
likelihood80 instead of computing the likelihood in O(∣V∣2) operations;
sampling vertices individually; incorporating graph symmetries during
sampling—by swapping affected vertex positions—or even approximate
symmetries81.

Beyond sampling applications, the success of cluster transformations
suggests they could enhance existing likelihood maximization algorithms
like Mercator.

Data availability
The data were obtained from an online repository82 or can be fetched from
the original papers83–90. All the data are also availablewith the code at https://
doi.org/10.5281/zenodo.15272626.

Code availability
APython implementation of BIGUE is available at https://doi.org/10.5281/
zenodo.15189658. The Python code for the numerical analysis of this paper
is available at https://doi.org/10.5281/zenodo.15272626.
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Supplementary Methods 1: Metropolis-Hastings sampling

The Metropolis-Hastings algorithm generates Markov chains with arbitrary target invariant measures by (i) sampling
transitions between states from a proposal distribution and (ii) accepting or rejecting new states with a carefully
crafted acceptance probability. More specifically, the acceptance probability of new state x∗ given the previous
state x for a continuous random variable is

α(x∗, x) =
p(x∗)q(x|x∗)
p(x)q(x∗|x)

, (S1)

where q(y∗|y) is the density of the transition kernel, that is, the density of sampling new state y∗ from state y. In
this section, the target p is always the posterior distribution of the Bayesian model.

As explained in the text, we define a global transition kernel, which selects sub-kernels randomly, proportional
to their weight: 0.4 for a random walk and 0.2 for each cluster transformation (flip, exchange, translate; see the
main text and Fig. 4. We will design all sub-kernels with the target p as their stationary measures, meaning that
the proposed state of a subkernel can be accepted with probability 1. The weights are canceled in the acceptance
probability and their sole purpose is to help the chain mixing.

Random walk

For the Markov chain to be irreducible, the sampling space must be accessible from every neighborhood. This
is easily satisfied using a random walk algorithm. In this algorithm, a new state x∗ is sampled using a normal
distribution centered around the previous state x. When the random walk subkernel is selected by the global
kernel, the set of parameters to explore—that is θ, κ or β—is chosen randomly with equal probability. The main
challenge of a random walk Metropolis-Hastings is tuning the variance of the transition kernel. This becomes
increasingly difficult in high dimensions: A large variance leads to most proposals being rejected, and a small
variance leaves the chain in the same region, increasing the autocovariance and the mixing time in both cases.
Hence, we move vertices without significantly altering their angular ordering.

For uniformly distributed vertices on the circle, the distribution of angular separation between two geometrically
adjacent vertices is approximately (because of the periodicity on the circle) the exponential distribution of parameter
2π/|V | (i.e. it is a Poisson point process when ignoring periodicity). To preserve the angular order of vertices on
average, we sample each θu from

Θ∗
u = θu + ε mod 2π, ε ∼ N[−π,π)

(
0,

(
π

2|V |

)2
)
, (S2)

where N[−π,π) is the truncated normal distribution on the interval [−π, π) and where x mod 2π adjusts x such
that it lies in [−π, π). Since the normal distribution is symmetric, there is no bias induced from this transformation
q(θ∗|θ) = q(θ|θ∗).

The transition kernel for κ and β is a lower truncated normal kernel

x∗ ∼ N(xmin,∞)(x, σ
2
x), (S3)

where xmin is the smallest value for the parameter x. When applying the random walk onto κ, each individual κ∗u
is independently sampled from Eq. (S3). The normalization for Eq. (S3) cannot be omitted when computing the
ratio of q in Eq. (S1) because it depends on x. We use σκ = 0.5 and σβ = 0.3 to avoid large random walk steps,
since large variations would cause too large fluctuations in the connection probabilities. We use κmin = ϵ, βmin = 1
for consistency with the priors.

Cluster transformations

For given angular positions θ, we partition the vertices into clusters C such that every pair of angularly adjacent θi
and θj in the same cluster has an angular separation ∆(θi, θj) below a threshold t. The two geometric neighbors of
a vertex are the closest vertices in the clockwise and counter-clockwise direction of the circle. The partition of the
vertex set is converted to a partition of the circle by defining the boundaries of clusters as the midpoints between
each cluster’s endpoints.
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Because the cluster transformations are discrete, we define a subkernel’s probability mass function Q[Θ∗ = θ∗|θ],
which gives the probability of sampling a new set of positions θ∗ when the coordinates are currently equal to θ. For
the cluster transformation, the acceptance probability becomes

α(θ∗, θ) =
p(θ∗|G)Q[Θ∗ = θ|θ∗]
p(θ|G)Q[Θ∗ = θ∗|θ]

. (S4)

Each cluster transformation operates on a subset Λ of the partition, Λ ⊆ C, containing a predetermined number
of clusters. For instance, when we apply a translation and move cluster C1 ∈ C to the position of cluster C2 ∈ C,
then Λ = {C1, C2}. Since Λ is not ordered, we choose to translate C1 to C2 or C2 to C1 with equal probability:
P[Θ∗ = θ∗|Λ, θ] = 1/2. (This situation does not arise for the flip transformation because it involves a single cluster,
nor for the exchange transformation because it is symmetric.)

The probability Q of sampling the new state is found by marginalizing over all admissible partitions C (i.e.,
supersets of Λ)

Q[Θ∗ = θ∗|θ] =
∑
C⊇Λ

P[Θ∗ = θ∗|Λ, θ]P[Λ = Λ|θ], (S5)

where P[Λ = Λ|θ] is the probability mass function of proposed clusters Λ (random variables are typeset in bold to
distinguish them from their values). This equation holds if the cluster transformation only yields θ∗ when operating
on that specific Λ. This is the case for our cluster transformations except for very specific θ that have measure zero.

To define and calculate P[Λ = Λ|θ], we first note that a partition C usually contains more clusters than what is
strictly required by the transformation, and so we choose Λ randomly from C. When there isn’t a sufficient number
of clusters in the sampled partition C, the proposed θ∗ is automatically rejected. For the sake of simplicity and
efficiency, we use a uniform distribution corresponding to

P[Λ = Λ|C, θ] =
(
|C|
|Λ|

)−1

. (S6)

(We note that targeted cluster selection could be an interesting future research direction.)
Since the hyperbolic space has a hierarchical structure, natural clusters can emerge at different scales, and we

found it helpful to use a random threshold T to sample the partitions. This adds a bit of mathematical complexity,
as we will now need to think of the cluster proposal probability P[Λ = Λ|θ] as the marginal of P[Λ = Λ, C|θ] over
all partitions. To compute this probability, we note that there exists an interval of threshold values T ∈ [t, t′)
that yields the same partition C. Since our partitioning algorithm is otherwise deterministic, we can convert the
probability of sampling a particular partition C to the probability of sampling the threshold in that interval,

P[C = C|θ] = P[T ∈ [t, t′) | θ], (S7)

where C is the random variable of the partition. A uniform distribution over [0, π] might seem reasonable for T ,
but it turns out to be a poor choice because the density of vertices per radian depends on the number of vertices.
In other words, for the same threshold value, increasing the number of vertices would eventually lead us to propose
a single cluster with probability close to 1 (unless there are gaps that never contain any vertices).

To take this into consideration, we parameterize the distribution of T using the probability ξ that at least one
vertex u is within the separation threshold t of another vertex v

ξ := P[∃u : |θu| < t/2] = 1−
(
1− t

π

)|V |−1

, (S8)

where we assume that the angles are uniformly distributed and set θv = 0 without loss of generality. By rearranging
this equation, we get

t(|V |, ξ) = π(1− (1− ξ)1/(|V |−1)). (S9)

In the algorithm, we draw T , by analogy to the random walk subkernel for the embedding coordinates:

T ∼ N[0,π)

(
t(|V |, 0.9),

(
π

2|V |

)2
)
. (S10)
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In order to compute Eq. (S5), we need an efficient way to find every partition C ⊇ Λ and another to find the
intervals [t, t′) of Eq. (S7). Luckily, our partitioning algorithm makes this feasible: A cluster can only shrink as T
decreases and can only grow as T increases. This means that given Λ and θ, all valid partitions C ⊆ Λ are obtained
within an interval T ∈ [tmin, tmax). The values of tmin(Λ) and tmax(Λ) are the largest in-cluster and the smallest
inter-cluster angular separations found for any cluster of Λ respectively

tmin(Λ) = max
Cj∈Λ

max
u∈Cj

v∈A(u)∩Cj

∆(θu, θv), (S11)

tmax(Λ) = min
Cj∈Λ

min
u∈Cj

v∈A(u)\Cj

∆(θu, θv), (S12)

where A(u) is the set of the two angularly adjacent vertices of u. The inner maximum of Eq. (S11) is set to 0
when Cj contains only u and the inner minimum of Eq. (S12) is set to π when Cj contains all the vertices (they
are ill-defined otherwise).

We now determine the thresholds within (tmin, tmax) for which the partition changes, which, here, is when the
number of clusters changes. These intermediary thresholds are in fact the angular separations of geometrically
adjacent vertices outside the required clusters (noted {u ̸∈ Λ})

{∆(θu, θv)|u ̸∈ Λ, v ∈ A(u)} ∩ (tmin, tmax). (S13)

These are used to partition the admissible thresholds

[tmin, tmax) = [tmin, t1) ∪ [t1, t2) ∪ · · · ∪ [tk, tmax), (S14)

where k is the number of intermediary thresholds and ti is the ith intermediary threshold in ascending order. Hence,
denoting I(Λ) the set of these subintervals,

P[Λ = Λ|θ] =
∑

[t,t′)∈I(Λ)

P[Λ = Λ|C, θ]P[T ∈ [t, t′) | θ], (S15)

where, with a slight abuse of notation, we have used the fact C is the partition obtained for thresholds T ∈ [t, t′).
We note that Eq. (S4) is derived from a detailed balance, and thus requires that Q[Θ∗ = θ|θ∗] > 0 if and only

if Q[Θ∗ = θ|θ] > 0, meaning that each transformation should be reversed by a single Markov transition. This is
always the case for our cluster-based transformations because each one can be undone when they operate on the
same Λ. Our partitioning technique also ensures that Λ can be a subset of the partition of the transformed angular
coordinates θ∗: each cluster transformation cannot place a vertex closer than t/2 to the cluster boundary, which
means that there exists an interval of threshold [t, t+ δ) that yields a partition of θ∗ containing obtaining Λ for θ∗
(δ = 0 if two vertices exactly have a distance of t/2 to a cluster boundary, an event of measure zero).

Finally, it’s important to note that the angular separation between vertices and cluster boundaries changes.
This means that the intermediary thresholds are not the same for θ and θ∗ and that the interval [tmin, tmax) and
the intermediary thresholds for θ∗ must also be computed in Q[Θ∗ = θ|θ].

In summary, each cluster-based subkernel transition is done by first sampling T according to Eq. (S10), which
gives a partition C for the current angular coordinates θ. We then sample Λ ⊆ C with |Λ| being the required
size for the transformation. We apply the cluster transformation with the outcome probabilities P[Θ∗ = θ∗|Λ, θ],
which yields θ∗. We accept θ∗ as the new state with probability α(θ∗, θ) of Eq. (S4). The marginalized probability
Q[Θ∗ = θ|θ∗] that the sampling drew θ∗ is given by Eq. (S5) (and Q[Θ∗ = θ|θ∗] is simply obtained by exchanging
θ ↔ θ∗ in the equations and by using the Λ that was sampled to produce θ∗ in the first place).
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Supplementary Methods 2: Convergence diagnostics

Assessing the quality of an MCMC sampler can be challenging. At the very least, one should verify that (1) the
autocovariance of the states decreases with the lag and (2) the stationary distribution is identical no matter the
initial state. The former indicates how small the error of Monte Carlo estimators is (by virtue of the Markov chain
central limit theorem), and the latter suggests that a Markov chain running long enough will lead to the correct
stationary distribution. In this section, we present the effective sample size and the potential scale reduction factor,
proxies of these desired properties. We also extend these statistics to random variables on the circle.

The Gelman-Rubin [1] potential scale reduction factor R̂ indicates whether or not the different chains “agree”
on the typical values of the parameters. Let (x

(m)
1 , x

(m)
2 , . . . , x

(m)
N ) be the mth Markov chain’s state, and for the

sake of simplicity, let us assume that we have M chains of equal length N . The total chain variance is estimated
with the weighted average

v̂ar+ :=
N − 1

N
W +

1

N
B, (S16)

where W and B/N are, respectively, the within-chain average variance and the between-chain variance

W =
1

M

M∑
m=1

s2m, (S17)

B =
N

M − 1

M∑
m=1

(x̄(m) − x̄)2, (S18)

and where s2m and x̄(m) are the sample variance and sample average

s2m =
1

N − 1

N∑
j=1

(x
(m)
j − x̄(m))2, (S19)

x̄(m) =
1

N

N∑
j=1

x
(m)
j , (S20)

x̄ =
1

M

M∑
m=1

x̄(m). (S21)

The potential scale reduction factor is then

R̂ :=

√
v̂ar+

W
. (S22)

When an MCMC algorithm mixes properly, the chains’ R̂ → 1 as N → ∞. We use the “split-R̂” variant [2], where
each chain is split in two for the computation of R̂. This adjustment helps detect a within-chain lack of convergence.
Note that having a small R̂ is a necessary but insufficient convergence condition.

The effective sample size quantifies how many sample points of the sample are considered independent. The
(unnormalized) sample autocovariance is

am(τ) =

N−τ∑
j=1

(x
(m)
j − x̄(m))(x

(m)
j+τ − x̄(m)). (S23)

The effective sample size of chain m is [3]

n
(m)
eff ≈ N

1 + 2
∑N

τ=1 ρm(τ)
(S24)

where ρm(τ) = am(τ)/am(0) is the normalized sample autocovariance. In practice, Eq. (S23) is noisy for large τ
because there are not enough sample points. We use a maximum lag of τ = ⌊N/50⌋.
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Autocovariance can be combined across chains using [4]

ρ(τ) = 1−
W − 1

M

∑M
m=1 s

2
mρm(τ)

v̂ar+
, (S25)

which yields the global effective sample size

Seff ≈ NM

1 + 2
∑N

τ=1 ρ(τ)
. (S26)

We use the same heuristic as n(m)
eff for the maximal lag value.

Seff and R̂ statistics are typically used for continuous random variables defined on the real line. Hence, we use
these for the parameters κu and β. However, they are not appropriate for the angular coordinates because of the
cyclic boundary condition. The issue stems from additions and subtractions that appear in averages, Eq. (S26) and
Eq. (S22).

To extend Seff and R̂ to a Markov chain realization (θ
(m)
0 , θ

(m)
1 , . . . , θ

(m)
N ) on the circle, we use the circular

analogous of the sample average and the sample correlation coefficient, which are respectively [5]

ϕ̄ := arg

 S∑
j=1

exp{iϕj}

, (S27)

rΦ,Ψ :=

∑S
j=1 sin

(
ϕj − ϕ̄

)
sin
(
ψj − ψ̄

)√∑N
j=1 sin

2
(
ϕj − ϕ̄

)√∑N
j=1 sin

2
(
ψj − ψ̄

) , (S28)

where i is the imaginary number, and (ϕj)
S
j=1 and (ψj)

S
j=1 are i.i.d. samples of Φ and Ψ respectively with Φ and Ψ

being random variables on the circle. Note that, to simplify notation, θj denotes the jth state of the Markov chain
realization instead of the angular coordinate of vertex j.

The circular autocovariance at lag τ is obtained directly from Eq. (S28) with the sample points ϕj = θj and
their lagged values ψj = θj+τ . Since the numerator is analogous to the unnormalized sample covariance, we define
the unnormalized sample autovariance

a◦(τ) =

N−τ∑
j=1

sin
(
θj − θ̄

)
sin
(
θj+τ − θ̄

)
(S29)

and the normalized autocovariance function

ρ◦(τ) :=
a◦(τ)

a◦(0)
(S30)

that leads to the circular effective sample size

n◦eff ≈ 1

1 + 2
∑N

τ=1 ρ◦(τ)
. (S31)

To obtain the circular equivalents of Seff and R̂, we use the circular sample average for x̄ and x̄(m) and substitute
the subtractions (ϕ− ψ) with ∆(ϕ, ψ) in Eqs. (S18) and (S19).
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Supplementary Note 1: Computational complexity

The main drawback of using MCMC is that it typically scales poorly with the dimension of the sampling space. In
the case of the S1 model, this sampling space consists of 2|V |+1 parameters: |V | angular coordinates, |V | expected
degrees and β.

The complexity of our particular approach, BIGUE, is as follows. For the random walk described in section
Random walk of Supplementary Methods 1, sampling Θ∗ and computing the acceptance probability require O(|V |)
and O(|V |2) time, respectively, since the acceptance ratio contains one term for every pair of vertices. This is an
unavoidable bottleneck as disconnected vertices contribute greatly to the likelihood in the S1 model.

For the cluster transformations discussed in section Cluster transformations of Supplementary Methods 1, the
calculation of the acceptance probability also consists in a bottleneck. A number of steps have linear complexity in
the number of vertices. These include partitioning vertices into clusters C; performing the cluster transformation;
and finding the thresholds tmin, tmax and (ti)

k
i=1. Other steps are quicker. Sampling t and clusters both take O(1)

steps (at most two clusters sampled), and computing the biases induced by (tmin, tmax, (ti)ki=1) takes O(|C|) time.
Computing the posterior density, however, again requires O(|V |2) steps.

In summary, both kinds of sampling iterations scale in O(|V |2) in time because of the likelihood. While caching
partial sums of the log-likelihood could lessen the complexity of cluster moves, it would not provide a significant
improvement unless the clusters involve a small number of vertices.

In addition to the quadratic scaling of the iterations, the sampling space volume grows exponentially with the
number of variables. This is highlighted in Supplementary Figure 1a where using the same thinning as in Fig. 3d
of the main text, the Markov chain states still have a significant autocovariance. Supplementary Figure 1a suggests
that having little to no autocovariance between states would require skipping 10 iterations, which corresponds
to keeping 1 sample point for every 100, 000 iterations. This is a clear indication of the non-linearity of mixing:
sampling a graph with 3.33 times the number of vertices requires 10 times as many iterations.

Nonetheless, the chains settle to embeddings compatible with the ground truth and Mercator, as shown in
Supplementary Figure 1b-d. This means we can expect BIGUE to work on larger graphs, but it requires a lot of
computing time. With the current implementation of the algorithm, good quality samples for graphs much larger
than 100 vertices cannot be obtained in a reasonable time.
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Supplementary Figure 1: Inference for a synthetic graph of 100 vertices. (a) Normalized autocovariance of each
chain averaged over all parameters at different lags. Posterior estimation of the (b) angular coordinates θ (c)
parameters κ (d) inverse temperature β. In panels (b-d), values obtained from BIGUE, Mercator and the ground
truth are displayed in shades of blue, green and gray, respectively. The graph is generated with the same parameters
used for the synthetic graph of Fig. 1 of the main text. 400 total embeddings are sampled with four chains with a
thinning of 10, 000 iterations. Each chain is initialized without access to ground truth as in Fig.3b and runs for 50
iterations before samples are recorded (warm up or burn-in). The highest potential scale reduction factor for this
simulation is R̂max = 1.43, and the effective sample sizes Seff median is 231.80.
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Supplementary Note 2: Relationship between S1 and H2 models

While we developed our algorithm for the S1 formulation of hyperbolic random graphs, some measures, like the
greedy success rate, and visualization such as Fig. 1 of the main text use the hyperbolic coordinates in H2 embedding.
They are formally related by coordinate transformation

ru = RH − 2 ln
κu
κmin

(S32)

with RH = 2 ln |V |
µπκmin

where κmin > 0 is the smallest allowable κ value (we set κmin = 1), edge probabilities in the
S1 model can be rewritten as

P[auv = 1 | x, β] = 1

1 + exp
(
β(ru + rv + 2 ln ∆(θu,θv)

2 −RH)
) . (S33)

We retrieve the hyperbolic random graph model connection probability [6]

P[auv = 1 | x, β] = 1

1 + exp(β(dH(xu, xv)−RH))
(S34)

using the following approximation of the hyperbolic distance

dH(xu, xv) = arccosh

(
cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(θu − θv)

)
,

≈ ru + rv + 2 ln
∆(θu, θv)

2
, (S35)

where xu = (ru, θu) is the position of vertex u, and ru and θu are respectively the radial and angular coordinates
in the hyperboloid model.
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Supplementary Note 3: Differentiable S1 model

As suggested in Fig. 2 of the main text for unconnected vertices, the gradient of the likelihood is undefined when two
vertices, u and v, have the same angular coordinate θu = θv. The culprit is the derivative of ∆(θu, θv) with respect
to θu, since the function contains two absolute values. For a given value of θv, we have that −π+ θv ≤ θu < π+ θv,
which contains at most three discontinuities: θu = θv and θu − θv ∈ {−2π,−π, π, 2π}. One way to smoothen these
sharp transitions is to replace each absolute value with

|x| ≈ x

(
2

1 + e−bx
− 1

)
:= ã(x). (S36)

This approximation is exact in the limit of b → ∞, which allows us to control the sharpness of the gradient.
Beyond the obvious distortions around the discontinuities, another artifact of the approximation is that the rotation
symmetry is lost: the gradient doesn’t decrease to 0 at ±2π, while it does at θu = θv and θu − θv = ±π, where
the approximation is used. Further, while ã(0) = 0, the approximate separation is not zero for θu = θv because
π − ã(π) > 0.

We found in practice that using b > 3 caused gradient divergences in Stan. Supplementary Figure 2 compares
the exact angular separation to the approximate one with b = 3. While the error seems small, densely connected
groups of vertices are usually tightly grouped angularly, which can result in incorrect embeddings.

Supplementary Figure 2: (a) Differentiable approximation of the angular separation with b = 3. (b) Figure 2 of
the main text using the Differentiable S1 model with b = 3. The approximate angular separation is not invariant to
rotations because the gradient doesn’t decrease to 0 at θu = θv and at θu − θv = ±π. The gradient discontinuities
are gone at the cost of distortions of the likelihood.
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Supplementary Note 4: Numerical values of Figure 7

Supplementary Table 1 contains the number of vertices, the effective sample size, the density, the clustering, the
shortest path length average and the global hierarchy level with their uncertainty for each dataset of Fig. 7 of the
main text.
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Dataset |V | Seff Density Clustering Shortest path length average Global hierarchy level

Orig. BIGUE Mercator Orig. BIGUE Mercator Orig. BIGUE Mercator BIGUE Mercator

Macaque 47 431 [361, 611] 0.29, 0.28 [0.27, 0.29], 0.29 [0.28, 0.29] 0.55, 0.51 [0.50, 0.53], 0.54 [0.53, 0.55] 1.85, 1.83 [1.80, 1.86], 1.84 [1.81, 1.85] 0.61 [0.60, 0.64], 0.63 [—]

Zachary 33 933 [705, 1159] 0.15, 0.14 [0.13, 0.15], 0.15 [0.14, 0.15] 0.26, 0.30 [0.27, 0.33], 0.31 [0.30, 0.34] 2.39, 2.10 [2.00, 2.20], 2.30 [2.22, 2.35] 0.55 [0.51, 0.64], 0.80 [—]

Critics 29 959 [683, 1154] 0.18, 0.17 [0.16, 0.18], 0.13 [0.12, 0.14] 0.17, 0.31 [0.28, 0.35], 0.25 [0.21, 0.28] 2.28, 2.11 [1.99, 2.21], 2.60 [2.44, 2.75] 0.35 [0.31, 0.42], 0.62 [—]

Gangs 23 1059 [553, 1152] 0.27, 0.26 [0.24, 0.27], 0.27 [0.26, 0.28] 0.36, 0.41 [0.39, 0.44], 0.42 [0.40, 0.44] 1.77, 1.80 [1.74, 1.86], 1.81 [1.77, 1.85] 0.35 [0.32, 0.43], 0.58 [—]

Zebras 23 645 [385, 806] 0.42, 0.41 [0.40, 0.43], 0.42 [0.41, 0.42] 0.84, 0.76 [0.74, 0.80], 0.85 [0.84, 0.86] 1.86, 1.78 [1.70, 1.84], 1.90 [1.85, 1.91] 0.32 [0.30, 0.35], 0.56 [—]

Terrorism 18 1048 [759, 1135] 0.41, 0.40 [0.37, 0.41], 0.41 [0.39, 0.41] 0.56, 0.55 [0.52, 0.58], 0.58 [0.57, 0.59] 1.65, 1.65 [1.60, 1.70], 1.65 [1.62, 1.67] 0.48 [0.45, 0.52], 0.56 [—]

Kangaroo 16 509 [411, 600] 0.75, 0.74 [0.72, 0.75], 0.75 [0.74, 0.75] 0.85, 0.84 [0.83, 0.86], 0.85 [0.85, 0.86] 1.25, 1.26 [1.24, 1.27], 1.25 [1.24, 1.25] 0.23 [0.20, 0.27], 0.22 [—]

Tribes 16 962 [521, 1125] 0.48, 0.46 [0.41, 0.47], 0.49 [0.47, 0.51] 0.53, 0.55 [0.51, 0.59], 0.56 [0.52, 0.58] 1.54, 1.57 [1.49, 1.60], 1.53 [1.48, 1.55] 0.28 [0.22, 0.32], 0.42 [—]

Supplementary Table 1: Numerical values of the properties shown in Fig. 7 of the main text. For each property, the reported values are in order: original,
BIGUE, and Mercator. For the effective sample size Seff, the interquartile range is given instead of the highest density interval. Each sample is a combination
of 4 chains of length 300. The effective sample size can be greater than the sample size when the autocovariance is negative on odd lags.
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Supplementary Note 5: AUC ROC of link prediction

A common metric used in binary classification is the receiver operating characteristic curve (ROC). It quantifies
the sensitivity of the estimator as a function of the false positive rate. The area under the curve of the AUC (AUC
ROC, here shortened as AUC), is a scalar that summarizes this curve: a perfect estimator has an AUC of 1 and
a random classification estimator has an AUC of 0.5. The AUC for link prediction is computed using each pair of
vertices in the graph.

Supplementary Figure 3a illustrates that Mercator is a better predictor of the original graph than the Bayesian
model—this is simply because Mercator finds a embedding with a higher likelihood. After removing 5% of the
edges, Mercator’s AUC drops but remains higher than that of the Bayesian model. This is not surprising because
most edges still exist and removed edges are a small portion of the set of pairs of vertices.

Supplementary Figure 3: Area under the receiver operating characteristic curve (AUC) for (a) the synthetic graph
of Fig. 1 (b) the synthetic graphs where 5% of the edges were removed. The blue dotted line in panel (a) is the
median of the posterior sample.
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