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Abstract

We introduce Mercator, a reliable embedding method to map real complex networks into their
hyperbolic latent geometry. The method assumes that the structure of networks is well described by
the popularity X similarity S!/H? static geometric network model, which can accommodate arbitrary
degree distributions and reproduces many pivotal properties of real networks, including self-similarity
patterns. The algorithm mixes machine learning and maximum likelihood (ML) approaches to infer
the coordinates of the nodes in the underlying hyperbolic disk with the best matching between the
observed network topology and the geometric model. In its fast mode, Mercator uses a model-
adjusted machine learning technique performing dimensional reduction to produce a fast and
accurate map, whose quality already outperforms other embedding algorithms in the literature. In the
refined Mercator mode, the fast mode embedding result is taken as an initial condition in a ML
estimation, which significantly improves the quality of the final embedding. Apart from its accuracy as
an embedding tool, Mercator has the clear advantage of systematically inferring not only node
orderings, or angular positions, but also the hidden degrees and global model parameters, and has the
ability to embed networks with arbitrary degree distributions. Overall, our results suggest that mixing
machine learning and ML techniques in a model-dependent framework can boost the meaningful
mapping of complex networks.

1. Introduction

The main hypothesis of network geometry states that the architecture of real complex networks has a geometric
origin [1-3]. The nodes of the complex network can be characterized by their positions in an underlying metric
space so that the observable network topology—abstracting their patterns of interactions—is then a reflection of
distances in this space. This simple idea led to the development of a very general framework able to explain the
most ubiquitous topological properties of real networks [ 1, 2], namely, degree heterogeneity, the small-world
property, and high levels of clustering. Network geometry is also able to explain in a very natural way other non-
trivial properties, like self-similarity [1, 4] and community structure [5-7], their navigability properties [8—10],
and is the basis for the definition of a renormalization group in complex networks [11]. The geometric approach
has also been successfully extended to weighted networks [12] and multiplexes [13, 14].

Beyond being a formal theoretical framework to explain the topology of real networks, network geometry
can be used to develop practical applications for real systems, including routing of information in the Internet
[10], community detection [10, 15, 16], prediction of missing links [3, 17, 18], a precise definition of hierarchy in
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networks [16], and downscaled network replicas [11], to name a few. However, applications require faithful
embeddings of real-world networks into the hidden metric space using only the information contained in their
topology. Several algorithms have been proposed to solve this problem, most of which either use maximum
likelihood (ML) estimation techniques [ 10, 19—-22], machine learning [23-25], or a combination of both [25, 26].

ML techniques assume that the network under study has been produced by a given model—a geometric one
—and finds the values of its parameters that maximize the probability for the model to generate the observed
topology. This technique requires finding the coordinates of every node in the latent geometry that maximize the
likelihood function: a task that, in general, is NP-hard and consequently must rely on heuristics to obtain a
reasonable approximate solution. ML methods are therefore generally slow, and their accuracy depends strongly
on the chosen heuristic as well as on the quality of the underlying theoretical model.

In contrast, machine learning techniques are fast and model independent, so they can be used to find
embeddings of large networks. A promising and accurate method is based on Laplacian eigenmaps (LE) [23, 24], a
method originally designed to find dimensional reductions of a set of points embedded in R” to an arbitrary
dimensional space R” with m < #[27]. The LE method requires the definition of Euclidean distances between
nodes in R”, but since no information is available about the ‘real Euclidean’ distances between connected pairs of
nodes in networks, the use of heuristic arguments is necessary to estimate these distances [24]. A more fundamental
problem with machine learning methods is that the embeddings are performed on Euclidean spaces. However, as
shownn [2, 3], the geometry of real complex networks is better described by hyperbolic rather than Euclidean
geometry, where angular coordinates on a circle are a proxy for the similarity between nodes, and their radial
coordinates account for their popularity, which is typically measured by their degrees [ 1]. Machine learning methods
are only able to infer the angular coordinates corresponding to the similarity sub-space while radial coordinates have
to be inferred using some geometric model. Hence, these methods end up being model dependent as well.

Consequently, both types of methods are very sensitive to the model used to describe the network. The
approaches introduced in references [19, 20, 23—25], which are based on the popularity x similarity
optimization (PSO) model described in [3], which uses a simple mechanism to explain the emergence of an
effective hyperbolic geometry in growing networks. However, this model can only generate pure power-law
degree distributions P(k) ~ k™ 7 withy > 2, whereas the degree distribution in many real networks shows
important deviations from such pure power laws. Moreover, the model does not spontaneously generate the
nested hierarchy of self-similar subgraphs with increasing average degree, as observed in real systems [ 1, 4].

In this paper, we introduce Mercator, a ready-to-use C-++ code’ that mixes the best of the ML and machine
learning approaches. The mixing of the two techniques was explored in [26] using the PSO model to maximize the
likelihood function. Instead, we use the static version of the same type of popularity x similarity geometric models,
the S!/H? model [1, 2], that can accommodate arbitrary degree distributions and can reproduce the self-similarity
patterns observed in real networks. The first step in Mercator is to apply a LE approach, as in [24], but using the
S!'/H? model instead of the PSO to infer the weights of the Laplacian matrix. Doing so yields a first (and fast)
embedding method that already outperforms the one of [24]. The resulting embedding uses only information about
pairs of connected neighbors, and can be further improved by using it as a starting point in a ML optimization—
based again on the S!/H? model—that uses information from both connected and not-connected pairs of nodes.
The final result is the most accurate embedding method currently available in the literature. Yet, the final complexity
of the method is O(N?) for sparse networks with Nnodes, which makes it competitive for real applications.

2. Methodological background

2.1. The S'/H? model
The S' model is the simplest among the class of geometric models [ 1]. The similarity space is a one dimensional
sphere—a circle of radius R—where N nodes are distributed with a fixed density, set to one without loss of
generality, so that N = 27R"". Each node is also given a hidden variable x € [r¢, 00) proportional to its
expected degree. In general, x and the angular position 6 can be correlated and distributed according to an
arbitrary distribution p(k, 0). In such case, the model is able to generate community structure [5-7] and can
reproduce different degree—degree correlation patterns and clustering spectra.

Once all nodes are assigned a tuple (k, 6), each pair of nodes is connected with probability

1
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o The code will be available at https://github.com /networkgeometry/mercator upon publication.

10 . . T . . . .
Notice that in thermodynamic limit the curvature of the circle vanishes and the model is effectively defined on R!.
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where d;; = RAO;;is the arc length of the circle between nodes i and j separated by an angular distance A ¢;;.
Parameters pand 3 control the average degree and the clustering coefficient, respectively. The model can be
L [1]. The
particular functional form that we chose here (the Fermi distribution) is the one that defines maximally random
ensembles of geometric graphs that are simultaneously clustered, small-world, and with heterogeneous degree
distributions.

If n;)des are uniformly distributed over the circle, we have p(k, 0) = p(x)/27. In this case, the choice
K= 2m
Kkis k(k) = xand the network average degree is (k) = (k). Itis therefore possible to associate unambiguously
the hidden variable  with the node degree. For finite systems, however, the values of the hidden variables x must
be evaluated numerically. It is also important to notice that the parameter 1 is, in fact, superfluous since it can be
absorbed in the definition of ; x would then be proportional, but not exactly equal, to the expected degree. Asa
result, the embedding task only requires the estimation of 2N + 1 parameters: the hidden variables (s, 6;),

i = 1,---, N, and the parameter (.

defined using any connection probability as long as it is an integrable function p(x) with x =

sin % guarantees that, in the thermodynamic limit, the expected degree of a node with hidden variable

2.1.1. Hyperbolic representation. The H? model
Quite remarkably, the S! model can be expressed as a purely geometric model in the hyperbolic plane. By
mapping the expected degree of each node x;to a radial coordinate as

=R —2In ﬁ, 2)
Ko
with R = 2In %,the connection probability becomes
IR
1
= 3
e 3)
where
A

xij =1+ r;+ 2In 5 4)

is a good approximation of the hyperbolic distance between two nodes separated by an angular distance A 6;;
and with radial coordinates r;and r;'' . The connection probability thus becomes a function of the hyperbolic
distance alone, which turns the model into a purely geometric one and has important consequences for the
global connectivity of the network. For instance, topological shortest paths closely follow geodesic curves in the
hyperbolic plane, and can therefore be used to efficiently navigate the network [8, 10]. Furthermore, when the
distribution of expected degrees follows a power law of exponent v, the radial distribution in the hyperbolic
planeis

sinh ar

ar 5
coshaR — 1 ©)

p(r) =«

withy = 2a + land @ > 0. Nodes are therefore homogeneously distributed in the hyperbolic plane for y = 3
and are quasi-homogeneously distributed for other values of . In this paper, we use the S! model for likelihood
maximization, and its equivalent H? version for visualization purposes.

2.2.Embedding techniques
Mercator exploits two different embedding techniques, based on ML and on LE, which are briefly outlined in
this section.

2.2.1. Model-corrected LE

LE was originally designed as a method for dimensional reduction. Given a set of points {x; € R", i = 1,---,N}
with the Euclidean metric, LE finds a mapping of these points {x; — y, € R”} withm < n such that the loss
function

e=>ly,— ylw(xi — xj*) (6)
i,j

is minimized. Here, |y, — yilis the Euclidian distance between points iand jin R” and w( - )is a decreasing
function of the distance between the same pair of points in the original Euclidean space R". Intuitively, placing
pairs of points far apart in R™ if they were originally close in R” increases the loss function equation (6).
Minimizing e should therefore yield a faithful dimensional reduction of the data.

11, . . Lo . - ” . .
This approximation is reasonably accurate for pairs of nodes separated by Af; > /e 2% 4 e~ 27, the fraction of which converges to one
in the thermodynamic limit.
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In the case of network embedding, our aim is to find coordinates of nodes in R? of a network whose structure
can be modeled by the S! model. To do so, the weight function w( - ) is taken to be proportional to the adjacency
matrix so that it is only different from zero if nodes i and j are connected. Yet, the weight associated to connected
pairs of nodes is still assumed to be a decreasing function of their original Euclidean distance, which must
somehow be estimated from the network structure. To do so, we leverage the S! model and estimate the
expected distance in R? (the chord length) of a pair of nodes based on their degrees. The set of coordinates that
minimize the loss function € is the solution of a generalized eigenvalue problem with the Laplacian matrix, for
which very fast algorithms exist if the network is sparse [28].

2.2.2. ML estimation

Given a real network with adjacency matrix {a;;}, ML estimation finds the values of { x;, ;},7 = 1, ---, N, that
provide a good match between the S! model and the observed network. The posterior probability, or likelihood,
that a network specified by its adjacency matrix {a;;} is generated by the S' model is

N
£la)s) = [+ [£llagh, i 6318) TT dords @
i=1

where the function £({a;;}, {xi, 6;} |S") is the joint probability that the S' model generates simultaneously the
set of hidden variables { x;, 0;} and the adjacency matrix {a;;}. Using Bayes rule, we then compute the likelihood
that the hidden variables {x;, 0;} take particular values conditioned on the observed adjacency matrix {a;;}

L({ag}, {Ki> 0;}ISH _ Prob({x;, 0;}) L({aj} |{ki, 6;}, S

L({xi, 0} 1{a}, S = ®)
: L({ag}ISh L({ag}IS"
where
N
Prob({ri, 6i}) = [[ p (0 ki) )]
i=1
is the prior probability density function of the hidden variables,
Lag}l{ri 03, S) =TT " — pp' =, (10)

i<j
is the probability that the S! model generates the adjacency matrix {a;;} conditioned on the hidden variables
{ ki 0;}, and p;; is the connection probability given by equation (1).

If we have information about the prior distribution of hidden variables, Prob({ »;, 6;}), Bayesian estimators
can be obtained by maximizing the likelihood in equation (8). However, in most cases, prior information is not
available. Besides, by using improper priors we do not need to specify the form of the distribution of expected
degrees p(x). This gives Mercator the flexibility to embed networks with arbitrary degree distributions. We then
assume that Prob({x;, #;}) = cte and obtain the ML estimator as the set of values { 7, 67} that maximize
equation (10) or, equivalently, its logarithm

In L({aj}|{ki 0;}, S) = Z [aijlnp; + (1 — ap)ln(1 — p)]. (11)
i<j
One of the advantages of using the S! model versus the H? is that the maximization with respect to the expected

degrees  can be performed semi-analytically. Indeed, the derivative of equation (11) with respect to the expected
degree x;0f node lis

a%lnﬁ({aijﬂ{fﬁi, 0;}, S" = EZ(ail — P (12)
I

Rl ]

where the second term on the right-hand side is the expected degree of node I, and the first term is its actual
degree k;. The value ;" that maximizes the likelihood is therefore the solution of

k=2 pi (13)
i=l
The term on the right-hand side can be evaluated in the model assuming a homogeneous angular distribution of
nodes on the circle. Notice that the numerical solution of this equation automatically takes into account finite
size effects. We use this method to provide estimates of the expected degrees that are then used to maximize the
likelihood function with respect to the angular coordinates, as explained in section A.6.

3. Mercator ata glance

We have now all the theoretical background to briefly describe Mercator; the full details are given at
sections A.1-A.7. Given a network with adjacency matrix {a;;}, we first measure its average degree (k), average

4
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clustering coefficient ¢, and all individual nodes’ degrees { k;,i = 1, ---, N}. Second, we estimate hidden degrees
and parameters S and p. Third, as in [24] we estimate the angular ordering of nodes using the model-corrected
LE, and adjust the angles according to the expected angular separation between consecutive nodes given by the
S! model. This yields Mercator’s fast mode version, which produces a first embedding. Fourth, the angular
coordinates are refined using ML. Finally, hidden degrees are readjusted given the newly inferred angular
positions. All the steps together conform Mercator refined mode. More precisely, Mercator executes the
following steps.

3.1. Fast mode

1. Propose an approximate value for fand compute p1 = %UO sin %

2. Using equations (1) and (13), adjust the hidden variables { x;} such that the expected degree of each node in
the S! model matches the observed degree in the original network. This step assumes that nodes are
homogeneously distributed and uses the values of Gand i from step 1. The initial guess is x; = k; (the
degree of node i in the original network).

3. Using results from steps 1 and 2, evaluate the theoretical value of the average clustering coefficient of the
network in the S! model. If this value differs from the one measured for the original network, adjust the
value of Fand return to step 1. Otherwise, proceed to step 4.

4. For every connected pair of nodes with hidden variables «; and x; and original degrees k;, k; > 1,estimate
. . . (A . .
their expected chord length in R as d;; = 2 sin <TJ>, where (Af;) is the expected angular separation

between connected nodes i and j in the S! model.

5.Construct a weighted Laplacian matrix Lj = D;; — wj, where D is the diagonal matrix with entries
D;; = 3; wjjand weights are given by wj; = a;; e/t with tbeing the variance of d;;. Then solve the
generalized eigenvalue problem

Lv = ADv.

Wenote vy = (V1,1, V1, >vi,n) and va = (15,1, ¥2,-- >V, v) the first two eigenvectors with the smallest
nonzero eigenvalues.

6. Assign an angular position to each nodeias §; = atan2(v,;, v1,;)-

7. Make a sorted list of the nodes based on their angular position {6;}. Nodes of degree 1 that were excluded at
step 4 are now reinserted in the sorted list randomly before or after their unique neighbor. Note that the
angular coordinates computed at step 6 are only used to determine the order in which nodes are located
angularly. Their precise angular coordinates are evaluated at the next step.

8. For each pair of consecutive nodes in the list, evaluate its angular separation as given by LE from step 7 and,
similarly to [25], its expected angular separation using the S! model conditioned on whether the two nodes
are connected or not, their hidden variables ;and r;, and the fact that they are consecutive. Choose as the
final gap the larger of the two. Finally, all gaps are normalized to sum up to 27. This produces a set of angular
coordinates for each node {6;,i = 1, ---, N}.

These 8 steps summarize a fast and accurate embedding procedure that, as discussed in section 4, already
outperforms current state-of-the-art methods. The next section explains how its accuracy can be further
increased.

3.2.Refined mode

The embedding can be significantly improved with ML techniques using the embedding obtained with the fast
mode of Mercator as initial conditions. This is due to the fact that ML uses the information contained both in the
presence and absence of links in the network, whereas LE only relies on the information conveyed by the presence of
links. The major drawback of ML is the complex configuration space that needs to be explored to find the optimal
embedding. However, if the starting point of the exploration is good enough, the maximization of the likelihood
function is easy and efficient. Thus, starting from the embedding obtained with the fast mode, we proceed as follows.

9. Extract the onion decomposition of the network [29] and sort nodes accordingly, starting with the node in
the deepest layer. The onion decomposition is a generalization of the k-core decomposition that provides
the internal organization of each k-shell. It therefore offers a more precise way to order nodes than based on
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Figure 1. Comparison between the angular coordinates inferred by different embedding methods in terms of the C-score (left) and the
Pearson correlation coefficient between original and inferred angular coordinates (middle), as a function of the clustering parameter
(. The right column shows the Pearson correlation coefficient between the original and the inferred connection probabilities of all
pairs of nodes. Every row corresponds to a different value of (k): (a) 4, (b) 8, and (c) 12. For every value of the parameters, we generated
and embedded 10 synthetic networks with the S' model of size N = 1000 and with power-law degree distribution exponenty = 2.5.
The plots show the resulting averages and standard deviations.

their position in the k-core decomposition alone. Doing so allows the likelihood optimization phase to
begin with the most central nodes (based on mesoscale topological information) thereby greatly facilitating
the finding of an acceptable local maximum in the configuration space.

10. For each node in the sorted list, find the average angular coordinate of its neighbors.

11. Sample O(In N) angular positions around this average value using a normal distribution whose standard
deviation is set to half of the angular distance between this average value and the farthest neighbor.

12. Compute the local log-likelihood of the sampled angular positions
InL; = Zuijlnpij + (1 — aij)ln(l — pij)’ (14)
j=i

where p;;is computed with equation (1), and set the new angular position of the node to the sampled angle
with highest log-likelihood.

13. Once the position of every node has been optimized once, repeat step 2 to find a better estimate of the
hidden variables x; using the newly inferred angular positions. This last step is optional, although it generally
leads to substantial improvements of the final embedding.

4. Validation in synthetic networks

4.1. Testing the S! model

We test Mercator using synthetic networks of different average degrees and clustering coefficients generated

with the S model, and consider several quality measures to check the accuracy of the embeddings. We first focus

6
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Figure 2. (a) Example of the inferred angular coordinates versus original angular coordinates for a network with (k) = 12and 8 = 3.
(b) Inferred versus original values of the global parameter 3 obtained from the embeddings of the networks in figure 1. (c) Relative
likelihood difference (€¢) = (Linfer/ Lrea) — 1averaged over all the networks of a given (k) and 3 embedded with Mercator (refined
mode with final adjustment of the { x;} at step #13). In many cases, Mercator is able to find embeddings with likelihoods above those
that generated the networks. In both plots, the errorbars represent the corresponding standard deviations. (d) Empirical connection
probabilities, obtained using the fast and refined modes of Mercator, compared to the theoretical curve for the network in (a).

on its capability to recover the angular coordinates. Figure 1 shows the C-score [24], defined as the fraction of
pairs of nodes that are correctly ordered in the circle, as well as the Pearson correlation coefficient between the
real and inferred angular coordinates'” and connection probabilities. The results of the two versions of Mercator
are compared with those obtained using the Coalescent embedding'” presented in [24], which was reported to
give the best node orderings with respect to other embedding algorithms in the literature. Notice that Mercator
is able to outperform the results even in its fast mode, especially for networks with a low average degree.
Strikingly, figure 1 reveals that the refined version of Mercator results in a significant improvement of the
connection probabilities, despite the change in the coordinates being seemingly small. Figure 2(a) depicts, as an
example, the inferred angular coordinates versus the real ones for one of the networks considered.

Mercator also has the clear advantage of systematically inferring the hidden degrees and global model
parameters. In figure 2(b) we show that the inference of 3 is very precise for all the synthetic networks considered
in this section. This has important implications for applications that require finding a good congruency between
the network and the model. Indeed, Mercator is able to find embeddings with very high likelihoods. To quantify
this, we consider the relative likelihood difference & = Linfer/Lreal — 1, where £ = L2/NN=Djsthe
geometric average of the likelihood over all pairs of nodes. Hence, a positive (negative) & indicates that the
inferred embedding has a higher (lower) likelihood than the real coordinates and model parameters. Strikingly,
for low values of 3, the embeddings found by Mercator have £ > 0 (figure 2(c)). Finally, figure 2(d) presents an
example of the empirical connection probability (fraction of connected pairs as a function of the rescaled
distance x = d/(ukk')), which is extremely congruent with equation (1), especially in its refined mode. Put
together, these results reveal that Mercator is not just the most accurate algorithm in terms of the reconstruction
of the angular coordinates of synthetic networks—arguably the most difficult aspect of the embedding problem
—, butitalso determines correctly all other model parameters, including hidden degrees.

4.2. Testing the PSO model

We also compare Mercator with the Coalescent embedding algorithm proposed in [30] for synthetic networks
generated with the PSO model [3] and with the non-uniform PSO model [ 7]—growing geometric models that
generate complex networks in hyperbolic space, the latter of the two with inhomogeneous angular distributions.

12 . .. . . . . . . .
Notice that the model is invariant with respect to global rotations and inversions of the angular coordinates. Therefore, we consider the
maximal Pearson correlation coefficient over all such possible transformations.

13 We used the repulsion—attraction pre-weighting rule RA1, LE for dimensionality reduction, and equidistant adjustment (EA). This choice
is motivated by the fact that LE was reported to yield the best results on synthetic networks [24].

7



I0OP Publishing NewJ. Phys. 21 (2019) 123033 G Garcia-Pérez et al

1.00
< N
'g _8' 0.73 t PR
o o
o .
8‘.’ = 0.47
5 8
0.4 0.25 : 0.20
1 2 3 1 2 3 1 2 3
1.0 i —— 3 1.00 g w— 1.00
A < 8 &
. <& < <
008 | | 507} S 073 | o ]
S o e
? 3 e
O 0.6 S 0.50 E 0.47
[ (@]
© (8]
0.4 : 0.25 : ‘ 0.20 :
1 2 3 1 2 3 1 2 3
c
e 1.00
< N
0.8 'Q 9 0.73 +
Q o o
8 —6— Coalescent 8 o
A 0.6 | # Mercator fast 1 5 0.50 | € 047 |
4 Mercator refined c S
& Mercator refined + adj. @ o
0.4 : : 0.25 : : 0.20 :
1 2 3 1 2 3 1 2 3
B B s

Figure 3. Comparison between the angular coordinates inferred by different embedding methods in terms of the C-score (left) and the
Pearson correlation coefficient between original and inferred angular coordinates (middle), as a function of the clustering parameter
3, for networks generated with the PSO model. The right column shows the Pearson correlation coefficient between the original and
the inferred connection probabilities of all pairs of nodes. Every row corresponds to a different value of (k): (a) 4, (b) 8, and (c) 12. For
every value of the parameters, we generated and embedded 10 synthetic networks of size N = 1000 and with power-law degree
distribution exponenty = 2.5. The plots show the resulting averages and standard deviations.
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Figure 4. (a) Hyperbolic embedding of the world airports network obtained by Mercator in the refined mode. Nodes are colored
according to the continent in which they are located, an information that is not used to obtain the embedding. (b) Comparison of the
expected connection probability based on the inferred value of 3 (expected) and the actual connection probability computed with the
inferred hidden variables { k;, 6;} (inferred) obtained using the fast and refined modes.

Results are shown in figure 3 and in figure S6 in the supplemental material. Even if Mercator often results in
embeddings with better congruency with the network’s ground-truth (especially regarding the connection
probabilities), it is worth mentioning that the improvement with respect to the Coalescent embedding algorithm
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Figure 5. Topological validation of the embedding of the airports network. The first row shows (a) the complementary cumulative
degree distribution, (b) the average nearest neighbors degree, Kk (k), and (c) the clustering spectrum, ¢ (k). Symbols correspond to the
value of these quantities in the original network, whereas the red lines indicate an estimate of their expected values in the ensemble of
random networks inferred by Mercator in the refined mode (the results obtained using the fast mode of Mercator are shown in blue).
This ensemble was sampled by generating 100 synthetic networks with the S' model and the inferred parameters and positions by
Mercator. The orange regions correspond to an estimate of the 20 confidence interval around the expected values. The second row
shows scattered plots of (d) the degree of every nodes, (e) the sum of the degrees of their neighbors, and (f) the number of triangles to
which they participate. The plots show the estimated values of these three measures in the same ensemble of random networks
considered above versus the corresponding values in the original network. The error bars show the 20 confidence interval around the
expected values. The quantity  corresponds to the fraction of nodes for which the value measured on the original network lies outside
the 20 confidence interval.

is less pronounced for these models than it is for the S! model. However, it is important to stress that these two
growing models do not reproduce a crucial feature of real-world networks, namely, the increasing average
degree of the subgraphs given by the nodes of degree larger than a given threshold k1, found in [1, 4]; thisisa
direct consequence of the fact that, in these growing models, nodes are added sequentially and every new node
adds exactly m links. Furthermore, since degrees are strongly correlated with nodes’ ages, degree-thresholding is
basically equivalent to selecting the subgraph given by all the Nj,. nodes older than some age, which contains
links per node and, hence, its average degree is (k (kr)) = 2mNy, /Ny, = 2m = (k). The S' model, on the other
hand, reproduces this crucial topological feature [ 1] (and it is also able to generate degree distributions which are
not clean power-laws), so it is reasonable to assume that a higher fidelity in recovering the S'-model ground-
truth is preferable in order to uncover the geometric information encoded in real networks.

5. Embedding of real networks

Another strength of Mercator is its ability to embed networks with arbitrary degree distributions. As an
illustration, we embedded several real-world complex networks from different domains whose degree
distributions include clean scale-free, heavy-tailed, and arbitrary distributions. More specifically, the networks
under study are: the world airport network'*, the neural network of the visual cortex of the Drosophila
Melanogaster at the neuron level [31], the neural network of the C. Elegans worm [32], a human connectome
[33, 34], the metabolic network of the bacterium E. Coli [15, 35], the world trade web [16], a US commute
network [36], a cargo ships network [37], a US commodities network [36], and the Internet at the Autonomous
Systems level [10].

One particularly telling example is the airports network whose truncated power-law degree distribution with
exponenty < 2 cannot be easily embedded with methods based on the PSO model. In the case of real networks,
we do not have access to the ‘real’ coordinates to compare with those obtained from our embeddings. Yet, in
some cases, metadata related to the similarity between nodes is available and can be used to test whether an
embedding is meaningful or, instead, is an artifact of the algorithm. In the case of the airports network,
geography is such metadata. Figure 4(a) shows the hyperbolic embedding obtained by Mercator in the refined
mode with nodes colored according to the continent they belong to (separating North and South America).

" Downloaded from https://openflights.org/data.html.
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Mercator’s refined mode applied to the real network datasets presented in section 5. (c) Mercator’s computational complexity broken
down into each each step of the algorithm. The same synthetic networks as in (a) were used. Dashed lines proportional to L or L* have
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Airports belonging to the same continent appear clustered in similar angular positions, thus supporting the
relation between the angular space of the embedding and similarity among nodes. Similar analyses were carried
out for the Internet at the autonomous systems level [ 10], metabolic networks [15], and the world trade web [16].
A strong correlation between the angular distribution of points and available metadata was found in all cases. In
light of these results, we conclude that our geometric embeddings are meaningful and capture attributes that
contribute to the similarity among the elements of complex networks.

Beyond this qualitative agreement, we tested the extent to which the embedding inferred by Mercator is
accurate enough to reproduce the topology of the airports network. To do so, we first compare the expected
connection probability equation (1) with the inferred value of Fagainst the empirical connection probability,
computed using the inferred coordinates of the nodes ({ x;, 6;}). This remarkable agreement confirms that the
rescaled distance x provides a meaningful measure to characterize the interaction between nodes in the network.
Second, we used the set of coordinates { x;, 0;} as well as the parameters Fand p to generate an ensemble of
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synthetic networks using equation (1). We then compared several topological properties of this ensemble with
those measured on the original network. Specifically, the first row of figure 5 shows the results for the
complementary cumulative degree distribution P.(k), the average nearest neighbors’ degree k,,, (k), and the
clustering spectrum ¢ (k). The final adjustment of hidden degrees in step #13 of the Mercator algorithm strongly
enhances the reproduction of the degree distribution. Notice that the S! model does not include any mechanism
to control degree—degree correlations or the shape of the clustering spectrum (recall that 3 is chosen based on the
average clustering coefficient only). Yet, the generated network ensemble reproduces these two quantities with
remarkable precision. This is particularly interesting in the case of the average nearest neighbors’ degree, which
shows a non-trivial assortative behavior for low degrees both in the real network and the ensemble. This suggests
that the non-uniform angular distribution of nodes inferred by Mercator (and so the network geometric
properties) is partly responsible for the observed degree—degree correlations in real complex networks.

The ensemble of synthetic networks generated from the estimated geometric parameters of the airports
network performs also very well at reproducing topological properties of individual nodes. The second row of
figure 5 shows scattered plots of the degree of a given node, the sum of degrees of its neighbors, and number of
triangles attached to it in the generated network ensemble versus the same quantities measured on the original
network. For each node, we also compute the 20 confidence interval, and ( shows the fraction of nodes whose
original property (degree, sum of neighbors’ degree, number of triangles) lies outside this interval. Results show
that the fraction of points outside this interval is around 6%, which is consistent with the 20 (or ~95%)
confidence interval. These results, supported by those presented in the supplementary information, clearly
illustrate the accuracy of the embeddings provided by Mercator. To the best of our knowledge, such accuracy
cannot be obtained with other existing embedding methods.

6. Computational complexity

We now support our claim that the computational complexity of Mercator scales as O(N?) for sparse networks
composed of Nnodes (and L = (k) N /2 links). Figures 6(a) and (b) show the running time in seconds in
function of the number of links (L) for both synthetic and real networks. In both cases, we find that Mercator’s
refined mode does indeed roughly scale as L* although it is clear that other topological properties influence the
final total running time. With respect to the fast mode, we find that the computational complexity is roughly
linear within the range in the number of links that was considered. Finally, figure 6(c) breaks down the running
time into the time spent in each of the Mercator major steps, and doing so shows how most of the running time is
spent during the ML step.

7. Conclusions

In this work, we introduce and deliver the full code of Mercator, the most accurate method to embed complex
networks into their latent metric spaces. We showed that the quality of the embeddings can be significantly
improved by a proper combination of machine learning techniques and powerful statistical methods. Thanks to
this combination, Mercator is able to overcome some of the drawbacks of other techniques which, for instance,
require perfect power laws in the whole domain of degrees, a condition that is not met by many real networks.
Our results also indicate that the obtained embeddings are able to recover ground truth information not
contained in the network topology. We expect Mercator to become a standard tool within the toolbox of
network scientists and anybody interested in retrieving information from big data systems admitting a network
representation.
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Appendix. Mercator in details
We now provide the full details of Mercator.

A.1. Sketch of the method
The S' model has two global parameters that need to be inferred: p, controlling the average degree and 3, which
determines the level of clustering in the network. In addition, every node i is assigned two hidden variables: a
hidden degree x; and an angular coordinate 6;. The following method finds the values of 11, 3 and «; for which the
expected degrees in the model k (), that is, in synthetic networks generated with uniformly distributed angular
positions, equal the observed degrees in the real network and, moreover, the expected mean local clustering of
the embedding matches the real value. To that end, some values of ;4 and Fare proposed. Next, the
corresponding k; are calculated. Finally, the expected clustering coefficient is computed and (3is adjusted if the
predicted value is not within an acceptable range of the original value.

The method relies on the assumption that all nodes with the same degree have the same hidden degree.
Therefore, the first preliminary step is reading the network and counting the number of nodes in every degree
class k, that we denote by N;.

A.2.Inferring the hidden degrees
This step assumes some given value of Fand the corresponding 1 = %w sin %, where (k) is the observed

average degree. We then assign to every degree class the hidden degree given by x(k) = kas the initial guess. The
aim of the following algorithm is to adjust this relation so that k (x (k)) = k + €, where € can be set, for instance,
to e = 0.01. To solve this problem, we need a way to reckon the values of k (x (k)) from the relation (k). To that
end, it is useful to consider the probability for two nodes with hidden degrees x and «’ to be connected in the
ensemble of networks with global parameters R = N/(2), i, 3 and uniformly distributed angular coordinates.
This probability is given by

1 1 1 1 Rr )’

pag =1)= | ——dAO = /|1, =, 1 + —, — . (A1)
7r rAO\? 8 I} KK

0 1+ ek

Starting from the initial guess x(k) = k, we perform the following steps to refine the relation «(k):

1. Initialize expected degrees: For every degree class k, set k (1 (k)) = 0.

2. Compute expected degrees: For every pair of degree classes (k, k), compute P = p(a,)rx) = 1) using
equation (A1). Set k (k (k)) + Ny P — k(x(k))and k(s (k")) + Ny P — k(x(k’)). By doing so, we add the
expected number of connections of a node in degree class k with nodes in degree class k” and vice-versa.
Notice that, when k = k/, weset k(k(k))) + (Nt — 1)P — k(x(k)) instead.

3. Compute largest deviation: Let €y,x = max{ |k (k(k)) — k|}x be the maximal deviation between degrees and
expected degrees. If €., > ¢, the values of (k) need to be corrected. Then, for every degree class k, set
|k (k) + [k — k(k(k))]u| — r(k), where uis a random variable drawn from U(0, 1). The rationale behind
this transformation is that every degree-class hidden degree is corrected according to its expected-degree
excess or deficiency; the random variable u prevents the process from getting trapped in alocal minimum.
Next, go to step 1 to compute the expected degrees corresponding to the new set of (k). Otherwise, if
€max < 6 hidden degrees have been inferred for the current global parameters.

A.3.Inferring parameter 3

To infer 5, we need to compute the expected mean local clustering ¢ given the current values of the global
parameters as well as of the hidden-degree distribution provided by x(k) and N found using the algorithm from
the last subsection. The method is based on the following idea. Suppose we want to estimate the expected
clustering ¢ (k) of some node with degree k. According to the definition of mean local clustering, this quantity is
given by the probability for two randomly chosen neighbors of the node to be connected, which can be
computed in two steps: first, we randomly choose two of its neighbors and draw their distances to the node from
the distribution of distances between connected nodes in the model. Second, we compute the distance between
the two neighbors and, with it, the probability for them to be connected. Two important points require some
clarification:
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a. The model is uncorrelated at the hidden level. Therefore, in the calculation of the clustering, we draw the
two neighbors from the uncorrelated distribution P (k|k") = kP (k) / (k).

b. The distribution of angular distance A between two connected nodes with hidden degrees ~ and &/,
p(Abla,, = 1), where a, stands for the corresponding adjacency-matrix element, is given by

P(ﬂm’ = 1)

P(A9|am’ =1)= (A2)

In the above expression, p(a,., = 1|Af0) = 1/(1 + (RAO/(urr')?)is the connection probability between
the two nodes with hidden degrees r and «’ separated by a distance Af. The distribution of distances in the
S! model is simply p(Af) = 1/, since angular coordinates are uniformly distributed. Finally, p(a,., = 1)
is given in equation (A1). Equation (A2) therefore reads

1 1
T

T %
1+ (5) )

AN
1 1 Rm \"
ZFI(I) E)l""a)_(#m{/) )

The expected mean local clustering can now be found following three steps:

p(Aelarm’ =1)=

1. Initialize mean local clustering: Let ¢ (k) represent the expected mean local clustering of degree class k. Set
¢(k) = Oforallk.

2. Compute expected mean local clustering spectrum: For every degree class k, do m times:
i. Draw two variables k; from P (k;|k), i = 1, 2.

ii. Draw the corresponding random variables Af; from the distributions p (Af)|a,yxk) = 1), i =1, 2
given in equation (A3).

iii. Consider the two semicircles spanned by the diameter of the circle passing through the degree-k node.
It is equally likely for its two neighbors to lay in the same or in different semicircles. Hence, with
probablhty 1/2, set A912 S mln(|A91 + Aazl , 2m — |A91 + A92|) or Aalz = IAQ] - A02|.

! 7 is the probability for nodes 1 and 2 to be

iv. Set ¢(k) + p,,/m — c(k), where p, = T ram V'
L (ﬂh(kl)h(lfz))

connected.

3. Compute expected mean local clustering: The expected mean local clustering ¢ can be readily computed
as¢ =y, c(k)Ny/N.

Ifthe error in the expected mean local clustering |¢ — ¢™P| < ¢;, where ¢; is the desired precision and ¢<™P is
the observed mean local clustering coefficient, we can accept the current value of 5 and proceed to the inference
of the angular coordinates. Otherwise, 3 needs to be corrected and the hidden degrees must be recalculated
accordingly by repeating the process explained in the previous subsection. Notice that, since the expected mean
local clustering coefficient is a monotonic function of 3, the process can be iterated efficiently using the bisection
method. In practice, however, we use a modified version of the bisection method in which the upper bound is let
free until we reach a value of 3 for which the expected clustering is higher than the observed one. More precisely,
we start with a value for § picked uniformly between 2 and 3. Then, while the expected clustering is lower than
the observed one, we increase 3 by multiplying it by 1.5. When we reach a value for which the observed clustering
is surpassed, we start the regular bisection method. We also note that, for ez = 0.01, m = 600 is enough. Of
course, if more precision is required, 1 must be increased to guarantee that the fluctuations in the computed

¢ (k) are small enough.

A.4. Angular coordinates

Having inferred the values for the parameters (3, ;rand { ;}, we are in a position to infer the angular coordinates,
{0;}, of each node. This is performed by following two steps: a machine learning step providing an initial ordering
of the nodes as well as realistic positions, and a second step in which nodes are moved in order to maximize the
likelihood that the S! model generated the original edge list.
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A.5. Initial ordering and positions

This step is a modified version of the LE algorithm introduced in [27] and used in [23, 24]. This machine learning
algorithm was originally conceived for dimensionality reduction. The main idea is as follows. Given a set of
pointsin R”, the algorithm first constructs a RGG by, for instance, connecting points located at a distance below
some threshold in #n-dimensional Euclidean space. Once this graph is known, the points are mapped to R with
m < nbydiagonalizing the corresponding Laplacian and assigning to every point i the coordinates

y, = (i, ;) where v}' is the ith component of the jth Laplacian eigenvector with non-null eigenvalue (the
eigenvectors are ordered according to their eigenvalues). It can be shown that these coordinates minimize the
squared distances between connected pairs in the RGG

6:2 |Yi_yj|2’ (A4)
ij

while preventing all nodes from collapsing into a single point. Furthermore, the relevance of every connection
(i, 7) in the RGG in the above expression can be modulated by assigning a weight w;; to itaccording to

Ixj—xjl?

wij=e T, (A5)

where |x; — x;|is the distance between the points in R” and tis a scaling factor fixed as the mean of the squares of
all the distances [24]. The same procedure then leads to the minimization of

€= Z ly, — lezwij, (A6)
i\j

The approach taken by [23, 24] is to consider the network to be embedded as the RGG generated in a higher-
dimensional space. Hence, by proceeding to the dimensionality reduction in m (typically m = 2) dimensions,
we obtain an embedding in R, which can be radially normalized so thatall points lay in S"~!. The
improvement in [24] is to assign weights according to some heuristic and, once the coordinates on the plane are
known, these are used to infer the ordering of nodes only. The final coordinates are computed by distributing all
nodes on the circle with 6, ; — 6; = 27/N, Vi. We now propose an improvement based on assigning the
weights in the Laplacian matrix as well as the gaps 6;,; — 6; according to the S! model.

1. LE for node ordering: Since degree-one nodes do not add geometric information, we remove them at this
step and work with the subgraph of nodes with k > 1. We then apply the LE method to such graph after
weighting every link according to equation (A5), where we use

. (Ad;)
[x; — xj| = 2SIHT (A7)

as a proxy for the distance |x; — x;j|and (A#f;) is the expected angular distance between nodes i and jin the
S! model conditioned to the fact that they are connected. The above expression simply maps such expected
angular distance onto the corresponding cord length, since LE is designed to work on Euclidean space and,
therefore, it seems natural to consider the S! model as embedded in R? for the algorithm. The expected
distance between the nodes can be readily computed from equation (A3) as

3
2 2 Rr /
T 2F1(1, 3 1+ E _(7/m(ki)m(kj)> )

AN
1 1 Rm '
2 2F1(1, ik 1+ 3 _(—/l,h",(k;)fc(kj)) )

Since a similar approach developed in [24] has been shown to yield very good results in terms of the angular
ordering of the nodes, we use this machine learning step to define a sequence of angular coordinates

S = (bh,....0n7) (A9)

(A8)

<A9ij> = fA@,-jp(AGijlaij = l)dAHij =
0

for the nodes in the subgraph, where the angles in S’ are ordered in increasing order. Each 6;is computed as
6; = atan2(vi, v), (A10)

where v/ and v are the x and y coordinates of node i found by LE. Once we have the ordering of nodes with

k > 1, wereincorporate the degree-one nodes. This can be easily done by replacing every node i with ¢
degree-one neighbors by the sequence (1],.. .,n[it/zJ , 1 nLit/zJ D ,nt)in §', where n]? is the jth degree-one
neighbor of node i (in any arbitrary order) and | - | is the floor function. Such operation yields a new sequence
ofnodes Sincludingall the nodes in the original graph.

2. Order-preserving adjustment: This last step of the approximate embedding locates the nodes on the circle
preserving the ordering of the nodes in S. To that end, we set every node’s coordinate such that the gap

14



I0OP Publishing NewJ. Phys. 21 (2019) 123033 G Garcia-Pérez et al

between two consecutive nodes in S is proportional to the expected gap between two consecutive nodes with
the same hidden variables and adjacency-matrix element in the S' model, except for the gaps in which LE
predicts a gap larger than the model. The reason for this heuristic is that, in networks with community
structure, large gaps indicate separation between communities, and these are detected by the dimensionality
reduction algorithm. We thus apply these steps:

i. Computing the expected gaps: Let nodesiand i + 1be consecutive in S. The distribution for the length of
the gap g;between them in the S! model can be obtained from Bayes’ rule, as in equation (A2)

(@iy1,i i) ,‘)
pglair) = = P(@i11g) 08 , (Al11)

fp(ai+1,i|gi)p(gi) dg;
0

where now p(g;) is an exponential distribution with mean 27/N
p(g) = e tis, (A12)
27

and

Aj,i 1—ajy,i

1 1
pair1,ilg) = x |1 - . (A13)

5 5
Rg; f Rg; ‘
1+ (llﬁ?(kivl)*i(ki)) 1+ (lm(kiﬂ)"l(ki))

The expected gap (g;) can thus be computed as

[ gip(aisilg)p(g)ds,
g =2 - (a1
[ paiiilg)p(g)dg;

0

Both integrals can be carried out numerically. Once the expected gap (g;) has been computed, set

g = max({g;), &), (A15)

where giLE stands for the angular separation between the nodes as given by the LE algorithm.

ii. Normalizing the gaps: By applying the last step to every pair of consecutive nodes (including the pair
(N, 1)), we obtain a sequence of N expected gaps which, however, needs not sum up to 27, so we
normalize each g;as

g =omr—Si (A16)

Zi]gi

Finally, we can assign every node’s coordinate sequentially, starting with 6, = 0,as 6, = 6;_; +
G pi=2,..N.

A.6. Likelihood maximization

This stage of the embedding algorithm adjusts the angular coordinates that maximize the likelihood for the
observed network to be generated by the model. As opposed to previously proposed likelihood-maximization
schemes, we do not need to explore a vast region of configuration space, since the machine learning stage
provides a set of coordinates located near an optimal configuration. Hence, we visit every node once and propose
several new angular coordinates for it, keeping the one with higher log-likelihood. The steps we follow are:

1. Define a new ordering of nodes: We visit the nodes in the order defined by the network’s onion
decomposition. In the sequence, the ordering among nodes belonging to the same layer in the
decomposition is random.

2. Find new optimal coordinates: For every node i, we select the optimal coordinate among candidate positions
generated in the vicinity of the mean angular coordinate of its neighbors. This is achieved in three steps:

i. Compute mean coordinate of node 7’s neighbors: Let node i have k; neighbors, which we now label with
indexj = 1, ..., k;. Since nodes lay on a circle, we must compute their mean angular coordinate ¢; using
the vector sum of their positioning vectors in R?. The polar angle of the resulting vector sum is given by
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K5

_ 1 . 1
0; = atan2 Z — sin6;, Z — cos b, (A17)
it i i

where the hidden degrees in the above expression weight the contribution of every neighbor’s positioning
vector, as proposed in [21].
ii. Propose new positions around 91:_ We generate 100 max(In N, 1) candidate angular coordinates from a
normal distribution with mean 6, and standard deviation o given by
o= max(l, %), (A18)
12 2
where Af,. is the angular distance between 6; and the most distant neighbor of node i, i..
A@max = max{m1n(|0] — 91": 21 — |9] — 91')}] (A19)
This last step is adapted from [38].

iii. Select the most likely candidate position: Compute the local log-likelihood of every candidate position as
well as of node i’s current angular coordinate according to

Ingl; = Z aij lnpij + (1 — b‘l,‘j)ln(l — pij)' (A20)

j=i

Locate node i at the angular position maximizing the local log-likelihood.

A.7. Adjusting hidden degrees
The final process adjusts hidden degrees according to the hidden coordinates found so that k (x;) = k;. The
algorithm is similar to the initial inference of hidden degrees:

1. Compute expected degrees: For every node 1, set

O I ppa—

N
[ (RA@U-)

HRiKj

(A21)

2. Correct hidden degrees: Let enax = max{|k(k;) — ki|}; be the maximal deviation between degrees and
expected degrees. If €,,c > ¢, the set of hidden degrees needs to be corrected. Then, for every node i, set
|k;i + [k; — k(k;))]u| — K;, where uis a random variable drawn from U(0, 1). As in section A.2, the random
variable u prevents the process from getting trapped in a local minimum. Next, go to step 1 to compute the
expected degrees corresponding to the new set of hidden degrees. Otherwise, if €. < €, hidden degrees
have been inferred for the current global parameters and angular coordinates.
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I. COMMUNITY DETECTION

A. Inhomogeneous S' model

We tested the performance of Mercator to detect community structure with 4 synthetic networks generated with
the S! model. A community structure was induced in each of these networks by a nonuniform distribution of the
angular positions (), see Fig. and the hidden variables x were drawn from the probability density function

p(r) oc K727, (S1)

with the proportionality constant chosen such that (k) ~ (k) ~ 10. We used 8 = 3.2 and fixed p = %ik) sin 5. We
then isolated the largest connected component which yielded the 4 networks of approximately N = 1000 nodes used
in this section.

Once we obtained the inferred positions from Mercator, we applied two techniques to identify angular communities.
The first one is the geometric critical gap method developed in [5] and later in [6] in which two nodes, i and j, belong
to the same community if their angular separation, Af;;, is less than

27(In(N) + ~
Af. = 7[ (N) ] , (S2)
where IV is the number of nodes in the network and v ~ 0.57721 is the Euler-Mascheroni constant. The critical gap in
Eq. is the expected maximal angular separation between two consecutive nodes found in a uniform distribution
of N points in a circle, which is taken as a null model without communities. Thus, a group of nodes separated

* Both authors contributed equally to this work
T Corresponding author: marian.boguna@ub.edu
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by two gaps larger than A6, correspond to a deviation from this null model, thereby defining a community. Notice,
however, that this definition is based only on geometry alone, without any direct information coming from the network
structure, which is anyway included in the embedding itself.

The second method, the topological critical gap method [7], is similar to the previous one but uses modularity to
determine what is the optimal critical gap to be used to partition the set of nodes. Our algorithm goes as follows.
We set Af,. at a value larger than the largest angular gap between two angularly consecutive nodes; there is therefore
only one single community. We then iteratively decrease Af. and split any community into two smaller ones at the
point where two consecutive nodes are separated by an angle larger than the new value of Af.. Note that we ignore
any split that would create a community containing 5 nodes or less. The number of communities thus increases as
the value of Af. decreases until it becomes smaller than the smallest angular gap between consecutive nodes. This
last situation corresponds to the case where every node belongs to its own community. At the end of this process, we
preserve the community structure corresponding to the value of A6, for which the modularity is maximal.

It is important to mention that these two methods will not recover the same partition used to the generate the
4 original networks. Indeed, the topology of the networks is subject to fluctuations due to the distribution of the
hidden variables x and 6 as well as to the network generation process itself (recall that the S' model only prescribes
the probability for the links to exist). Besides, some of the blocks generated are small and/or very close to nearby
blocks. Consequently, we do not expect these two methods to detect the exact same number of communities as the
number of angular blocks used to generate the networks. The aim of this analysis it rather to assess whether or not
Mercator is able to infer an embedding whose organization is coherent with the original angular structure.

We measured this coherence by computing the normalized mutual information between the angular partition used
to generate the networks (each block on Fig. corresponds to a community) and the communities identified by
the geometrical and topological critical gap methods. Table [SI] shows the results. As expected, neither of the two
methods detect the exact same original angular groups, however we see that Mercator is able to infer angular positions
that are extremely congruent with the original angular positions. Figures (right column) further illustrate the
community structures detected with both methods and compare them with the original angular structure.

The left column of Figs. show the embedding obtained with Mercator when g; = g-F at Eq. (A15) in the
main text, i.e., when the initial positions are only given by the LE method without enforcing a minimal angular
distance between nodes, which is set in Mercator as the expected angular distance two consecutive nodes in the S*
model. Our results show that although the angular positions provided by the LE method lead to embeddings where
the original angular blocks can be identified to some extent, the minimal angular distance coupled with the likelihood
maximization step allow to infer an embedding for which distances between nodes can be translated into topological
information in the form of a probability of connection.

Network NMI (fast mode) NMI (refined mode)
Network 1 (Geom. CGM) 0.88 0.88
Network 1 (Topol. CGM) 0.89 0.80
Network 2 (Geom. CGM) 0.57 0.80
Network 2 (Topol. CGM) 0.97 0.96
Network 3 (Geom. CGM) 0.80 0.80
Network 3 (Topol. CGM) 0.85 0.78
Network 4 (Geom. CGM) 1.00 0.97
Network 4 (Topol. CGM) 0.87 0.87

TABLE S1. Communities detected using the topological and geometrical critical gap methods on the embeddings obtained
with the fast and refined modes of Mercator for the 4 synthetic networks described in the text. The overlap between the original
angular blocks (see Fig. and the detected communities is measured using the normalized mutual information (NMI).
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FIG. S2. Network 1. Left column shows the embedding obtained with the fast mode of Mercator when the angular positions
are obtained directly from the LE method, i.e. g; = gi'" on Eq. (A15) in the main text. Right column shows the outcome of the
refined mode of Mercator, i.e. using Eq. (A15) in its actual form. First row shows communities detected with the geometrical
critical gap method and the second row with topological critial gap method. Nodes are colored according to the communities
detected by the corresponding method. The grey areas indicate the position of the gaps separating the original angular blocks.
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FIG. S3. Network 2. Left column shows the embedding obtained with the fast mode of Mercator when the angular positions
are obtained directly from the LE method, i.e. g; = g-'" on Eq. (A15) in the main text. Right column shows the outcome of the
refined mode of Mercator, i.e. using Eq. (A15) in its actual form. First row shows communities detected with the geometrical
critical gap method and the second row with topological critial gap method. Nodes are colored according to the communities
detected by the corresponding method. The grey areas indicate the position of the gaps separating the original angular blocks.
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FIG.

S4. Network 3. Left column shows the embedding obtained with the fast mode of Mercator when the angular positions

are obtained directly from the LE method, i.e. g; = gi'" on Eq. (A15) in the main text. Right column shows the outcome of the
refined mode of Mercator, i.e. using Eq. (A15) in its actual form. First row shows communities detected with the geometrical
critical gap method and the second row with topological critial gap method. Nodes are colored according to the communities
detected by the corresponding method. The grey areas indicate the position of the gaps separating the original angular blocks.
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FIG. S5. Network 4. Left column shows the embedding obtained with the fast mode of Mercator when the angular positions
are obtained directly from the LE method, i.e. g; = g-'" on Eq. (A15) in the main text. Right column shows the outcome of the
refined mode of Mercator, i.e. using Eq. (A15) in its actual form. First row shows communities detected with the geometrical
critical gap method and the second row with topological critial gap method. Nodes are colored according to the communities
detected by the corresponding method. The grey areas indicate the position of the gaps separating the original angular blocks.



B. Comparison with the nPSO model

S8

We compare Mercator with the Coalescent embedding algorithm proposed in Ref. [I] for synthetic networks
generated with the non-uniform Popularity-Similarity-Optimization (PSO) model [3] —a growing geometric model
generating complex networks in hyperbolic space with inhomogeneous angular distributions. Figure [S6] shows results

for networks generated with v = 2.5, N = 1000, and C = 9 different geometric communities.
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FIG. S6. Comparison between the angular coordinates inferred by different versions of Mercator and the Coalescent embedding
method (with and without equidistant adjustment—EA and Or., respectively) in terms of the C-score (left) and the Pearson
correlation coefficient between original and inferred angular coordinates (middle), as a function of the clustering parameter
B, for networks generated with the nPSO model with C' = 9 geometric communities. The right column shows the Pearson
correlation coefficient between the original and the inferred connection probabilities of all pairs of nodes. Every row corresponds
to a different value of (k): a. 4, b. 8, and ¢. 12. For every value of the parameters, we generated and embedded 10 synthetic
networks of size N = 1000 and with power-law degree distribution exponent v = 2.5. The plots show the resulting averages
and standard deviations.
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II. EMBEDDING REAL NETWORKS

Figures |[S7! show the quality of the embeddings obtained with Mercator in the refined mode for the 9 other real
complex networks mentioned in the main text.
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FIG. S7. Topological validation of the embedding of the neural network of the visual cortex of the Drosophila Melanogaster
at the neuron level [8]. The first row shows a. the complementary cumulative degree distribution, b. the average nearest
neighbors degree, knn(k), and c. the clustering spectrum, &(k). Symbols correspond to the value of these quantities in the
original network, whereas the red lines indicate an estimate of their expected values in the ensemble of random networks inferred
by Mercator. This ensemble was sampled by generating 100 synthetic networks with the S' model and the inferred parameters
and positions by Mercator. The orange regions correspond to an estimate of the 20 confidence interval around the expected
values. The second row shows scattered plots of d. the degree of every nodes, e. the sum of the degrees of their neighbors, and
f. the number of triangles to which they participate. The plots show the estimated values of these three measures in the same
ensemble of random networks considered above versus the corresponding values in the original network. The error bars show
the 20 confidence interval around the expected values. The quantity ¢ corresponds to the fraction of nodes for which the value
measured on the original network lies outside the 20 confidence interval. g. Comparison of the expected connection probability
based on the inferred value of 8 (expected) and the actual connection probability computed with the inferred hidden variables
{k:,0;} (inferred). h. Visualization of the embedding in hyperbolic space using the H? model. Only links whose probability
of existence in the S' model is above 0.5 are shown to avoid clutering the plot. i. Density of the inferred angular coordinates
{0;}. A horizontal dashed line is shown to indicate the uniform density for comparison.
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