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Abstract
We introduceMercator, a reliable embeddingmethod tomap real complex networks into their
hyperbolic latent geometry. Themethod assumes that the structure of networks is well described by
the popularity× similarity  1 2 static geometric networkmodel, which can accommodate arbitrary
degree distributions and reproducesmany pivotal properties of real networks, including self-similarity
patterns. The algorithmmixesmachine learning andmaximum likelihood (ML) approaches to infer
the coordinates of the nodes in the underlying hyperbolic diskwith the bestmatching between the
observed network topology and the geometricmodel. In its fastmode,Mercator uses amodel-
adjustedmachine learning technique performing dimensional reduction to produce a fast and
accuratemap, whose quality already outperforms other embedding algorithms in the literature. In the
refinedMercatormode, the fastmode embedding result is taken as an initial condition in aML
estimation, which significantly improves the quality of the final embedding. Apart from its accuracy as
an embedding tool,Mercator has the clear advantage of systematically inferring not only node
orderings, or angular positions, but also the hidden degrees and globalmodel parameters, and has the
ability to embed networks with arbitrary degree distributions. Overall, our results suggest thatmixing
machine learning andML techniques in amodel-dependent framework can boost themeaningful
mapping of complex networks.

1. Introduction

Themain hypothesis of network geometry states that the architecture of real complex networks has a geometric
origin [1–3]. The nodes of the complex network can be characterized by their positions in an underlyingmetric
space so that the observable network topology—abstracting their patterns of interactions—is then a reflection of
distances in this space. This simple idea led to the development of a very general framework able to explain the
most ubiquitous topological properties of real networks [1, 2], namely, degree heterogeneity, the small-world
property, and high levels of clustering. Network geometry is also able to explain in a very natural way other non-
trivial properties, like self-similarity [1, 4] and community structure [5–7], their navigability properties [8–10],
and is the basis for the definition of a renormalization group in complex networks [11]. The geometric approach
has also been successfully extended toweighted networks [12] andmultiplexes [13, 14].

Beyond being a formal theoretical framework to explain the topology of real networks, network geometry
can be used to develop practical applications for real systems, including routing of information in the Internet
[10], community detection [10, 15, 16], prediction ofmissing links [3, 17, 18], a precise definition of hierarchy in
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networks [16], and downscaled network replicas [11], to name a few.However, applications require faithful
embeddings of real-world networks into the hiddenmetric space using only the information contained in their
topology. Several algorithms have been proposed to solve this problem,most of which either usemaximum
likelihood (ML) estimation techniques [10, 19–22], machine learning [23–25], or a combination of both [25, 26].

ML techniques assume that the network under study has been produced by a givenmodel—a geometric one
—andfinds the values of its parameters thatmaximize the probability for themodel to generate the observed
topology. This technique requires finding the coordinates of every node in the latent geometry thatmaximize the
likelihood function: a task that, in general, is NP-hard and consequentlymust rely on heuristics to obtain a
reasonable approximate solution.MLmethods are therefore generally slow, and their accuracy depends strongly
on the chosen heuristic as well as on the quality of the underlying theoreticalmodel.

In contrast,machine learning techniques are fast andmodel independent, so they canbeused tofind
embeddings of large networks.Apromising and accuratemethod is basedonLaplacian eigenmaps (LE) [23, 24], a
methodoriginally designed tofinddimensional reductions of a set of points embedded in n to an arbitrary
dimensional spacem withm<n [27]. The LEmethod requires thedefinitionofEuclideandistances between
nodes in n, but since no information is available about the ‘real Euclidean’distances between connectedpairs of
nodes innetworks, the use of heuristic arguments is necessary to estimate these distances [24]. Amore fundamental
problemwithmachine learningmethods is that the embeddings are performedonEuclidean spaces.However, as
shown in [2, 3], the geometry of real complexnetworks is better describedbyhyperbolic rather thanEuclidean
geometry,where angular coordinates on a circle are a proxy for the similarity betweennodes, and their radial
coordinates account for their popularity,which is typicallymeasuredby their degrees [1].Machine learningmethods
are only able to infer the angular coordinates corresponding to the similarity sub-spacewhile radial coordinates have
to be inferredusing somegeometricmodel.Hence, thesemethods endupbeingmodel dependent aswell.

Consequently, both types ofmethods are very sensitive to themodel used to describe the network. The
approaches introduced in references [19, 20, 23–25], which are based on the popularity× similarity
optimization (PSO)model described in [3], which uses a simplemechanism to explain the emergence of an
effective hyperbolic geometry in growing networks. However, thismodel can only generate pure power-law
degree distributionsP(k)∼k− γwith γ>2, whereas the degree distribution inmany real networks shows
important deviations from such pure power laws.Moreover, themodel does not spontaneously generate the
nested hierarchy of self-similar subgraphswith increasing average degree, as observed in real systems [1, 4].

In this paper,we introduceMercator, a ready-to-useC++ code9 thatmixes the best of theMLandmachine
learning approaches. Themixing of the two techniqueswas explored in [26]using thePSOmodel tomaximize the
likelihood function. Instead,weuse the static versionof the same type of popularity×similarity geometricmodels,
the  1 2 model [1, 2], that can accommodate arbitrary degree distributions and can reproduce the self-similarity
patterns observed in real networks. Thefirst step inMercator is to apply a LE approach, as in [24], but using the
 1 2 model insteadof the PSO to infer theweights of the Laplacianmatrix.Doing so yields afirst (and fast)
embeddingmethod that alreadyoutperforms the one of [24]. The resulting embedding uses only information about
pairs of connectedneighbors, and canbe further improved byusing it as a starting point in aMLoptimization—
based again on the  1 2 model—that uses information fromboth connected andnot-connectedpairs of nodes.
Thefinal result is themost accurate embeddingmethod currently available in the literature. Yet, thefinal complexity
of themethod is ( ) N 2 for sparse networkswithNnodes,whichmakes it competitive for real applications.

2.Methodological background

2.1. The  1 2 model
The 1model is the simplest among the class of geometricmodels [1]. The similarity space is a one dimensional
sphere—a circle of radiusR—whereNnodes are distributedwith a fixed density, set to onewithout loss of
generality, so that p=N R2 10. Each node is also given a hidden variable [ )k kÎ ¥,0 proportional to its
expected degree. In general,κ and the angular position θ can be correlated and distributed according to an
arbitrary distribution ρ(κ, θ). In such case, themodel is able to generate community structure [5–7] and can
reproduce different degree–degree correlation patterns and clustering spectra.

Once all nodes are assigned a tuple (κ, θ), each pair of nodes is connectedwith probability

( )
( )=

+
mk k

bp
1

1

, 1ij
dij

i j

9
The codewill be available at https://github.com/networkgeometry/mercator upon publication.

10
Notice that in thermodynamic limit the curvature of the circle vanishes and themodel is effectively defined on 1.
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where dij=RΔθij is the arc length of the circle between nodes i and j separated by an angular distanceΔ θij.
Parametersμ andβ control the average degree and the clustering coefficient, respectively. Themodel can be
defined using any connection probability as long as it is an integrable function p(χ)with c =

mkk ¢
d [1]. The

particular functional form thatwe chose here (the Fermi distribution) is the one that definesmaximally random
ensembles of geometric graphs that are simultaneously clustered, small-world, andwith heterogeneous degree
distributions.

If nodes are uniformly distributed over the circle, we have ρ(κ, θ)=ρ(κ)/2π. In this case, the choice
m = b

p
p
bá ñ

sin
k2

guarantees that, in the thermodynamic limit, the expected degree of a nodewith hidden variable

κ is ¯ ( )k k=k and the network average degree is ká ñ = á ñk . It is therefore possible to associate unambiguously
the hidden variableκwith the node degree. Forfinite systems, however, the values of the hidden variablesκmust
be evaluated numerically. It is also important to notice that the parameterμ is, in fact, superfluous since it can be
absorbed in the definition ofκ;κwould then be proportional, but not exactly equal, to the expected degree. As a
result, the embedding task only requires the estimation of 2N+1 parameters: the hidden variables (κi, θi),
i=1,L,N, and the parameterβ.

2.1.1. Hyperbolic representation. The 2 model
Quite remarkably, the 1model can be expressed as a purely geometricmodel in the hyperbolic plane. By
mapping the expected degree of each nodeκi to a radial coordinate as

ˆ ( )k
k

= -r R 2 ln , 2i
i

0

with ˆ º
mpk

R 2 ln N

0
2 , the connection probability becomes

( )
( ˆ)

=
+ -bp

1

1 e
, 3ij x Rij2

where

( )
q

= + +
D

x r r 2 ln
2

4ij i j
ij

is a good approximation of the hyperbolic distance between two nodes separated by an angular distanceΔ θij
andwith radial coordinates ri and rj

11 . The connection probability thus becomes a function of the hyperbolic
distance alone, which turns themodel into a purely geometric one and has important consequences for the
global connectivity of the network. For instance, topological shortest paths closely follow geodesic curves in the
hyperbolic plane, and can therefore be used to efficiently navigate the network [8, 10]. Furthermore, when the
distribution of expected degrees follows a power law of exponent γ, the radial distribution in the hyperbolic
plane is

( ) ˆ ( )r a
a

a
=

-
r

r

R

sinh

cosh 1
5

with γ=2α+1 andα>0.Nodes are therefore homogeneously distributed in the hyperbolic plane for γ= 3
and are quasi-homogeneously distributed for other values of γ. In this paper, we use the 1model for likelihood
maximization, and its equivalent 2 version for visualization purposes.

2.2. Embedding techniques
Mercator exploits two different embedding techniques, based onML and on LE, which are briefly outlined in
this section.

2.2.1.Model-corrected LE
LEwas originally designed as amethod for dimensional reduction. Given a set of points { }Î = i Nx , 1, ,i

n

with the Euclideanmetric, LE finds amapping of these points { } Î x yi i
m withm<n such that the loss

function

∣ ∣ (∣ ∣ ) ( )å w= - - y y x x 6
i j

i j i j
,

2 2

isminimized.Here, ∣ ∣-y yi j is the Euclidian distance between points i and j in m andω(·) is a decreasing
function of the distance between the same pair of points in the original Euclidean space n. Intuitively, placing
pairs of points far apart in m if theywere originally close in n increases the loss function equation (6).
Minimizing ò should therefore yield a faithful dimensional reduction of the data.

11
This approximation is reasonably accurate for pairs of nodes separated by qD > +- -e eij

r r2 2i j , the fraction of which converges to one
in the thermodynamic limit.
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In the case of network embedding, our aim is tofind coordinates of nodes in 2 of a networkwhose structure
can bemodeled by the 1model. To do so, theweight functionω(·) is taken to be proportional to the adjacency
matrix so that it is only different from zero if nodes i and j are connected. Yet, theweight associated to connected
pairs of nodes is still assumed to be a decreasing function of their original Euclidean distance, whichmust
somehowbe estimated from the network structure. To do so, we leverage the 1model and estimate the
expected distance in 2 (the chord length) of a pair of nodes based on their degrees. The set of coordinates that
minimize the loss function ò is the solution of a generalized eigenvalue problemwith the Laplacianmatrix, for
which very fast algorithms exist if the network is sparse [28].

2.2.2.ML estimation
Given a real networkwith adjacencymatrix {aij},ML estimationfinds the values of {κi, θi}, i=1,L,N, that
provide a goodmatch between the 1model and the observed network. The posterior probability, or likelihood,
that a network specified by its adjacencymatrix {aij} is generated by the 1model is

({ }∣ ) ({ } { }∣ ) ( )ò ò k q q k=
=

  a a , , d d , 7ij ij i i
i

N

i i
1 1

1

where the function ({ } { }∣ )k q a , ,ij i i
1 is the joint probability that the 1model generates simultaneously the

set of hidden variables {κi, θi} and the adjacencymatrix {aij}. Using Bayes rule, we then compute the likelihood
that the hidden variables {κi, θi} take particular values conditioned on the observed adjacencymatrix {aij}

({ }∣{ } )
({ } { }∣ )

({ }∣ )
({ }) ({ }∣{ } )

({ }∣ )
( )k q

k q k q k q
= =







 




a
a

a

a

a
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, 8i i ij

ij i i
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i i ij i i

ij

1
1

1

1

1

where

({ }) ( ) ( )k q r q k=
=

Prob , , 9i i
i

N

i i
1

is the prior probability density function of the hidden variables,

({ }∣{ } ) ( ) ( )k q = -
<

- a p p, , 1 , 10ij i i
i j

ij
a

ij
a1 1ij ij

is the probability that the 1model generates the adjacencymatrix { }aij conditioned on the hidden variables
{κi, θi}, and pij is the connection probability given by equation (1).

If we have information about the prior distribution of hidden variables, ({ })k qProb ,i i , Bayesian estimators
can be obtained bymaximizing the likelihood in equation (8). However, inmost cases, prior information is not
available. Besides, by using improper priors we do not need to specify the formof the distribution of expected
degrees ρ(κ). This givesMercator theflexibility to embed networks with arbitrary degree distributions.We then
assume that ({ })k q = cteProb ,i i and obtain theML estimator as the set of values { }k q,i i* * thatmaximize
equation (10) or, equivalently, its logarithm

({ }∣{ } ) [ ( ) ( )] ( )åk q = + - -
<

 a a p a pln , , ln 1 ln 1 . 11ij i i
i j

ij ij ij ij
1

One of the advantages of using the 1model versus the 2 is that themaximizationwith respect to the expected
degreesκ can be performed semi-analytically. Indeed, the derivative of equation (11)with respect to the expected
degreeκl of node l is

({ }∣{ } ) ( ) ( )åk
k q

b
k

¶
¶

= -
¹

 a a pln , , , 12
l

ij i i
l i l

il il
1

where the second termon the right-hand side is the expected degree of node l, and the first term is its actual
degree kl. The value kl* thatmaximizes the likelihood is therefore the solution of

( )å=
¹

k p . 13l
i l

il

The termon the right-hand side can be evaluated in themodel assuming a homogeneous angular distribution of
nodes on the circle. Notice that the numerical solution of this equation automatically takes into account finite
size effects.We use thismethod to provide estimates of the expected degrees that are then used tomaximize the
likelihood functionwith respect to the angular coordinates, as explained in sectionA.6.

3.Mercator at a glance

Wehave now all the theoretical background to briefly describeMercator; the full details are given at
sections A.1–A.7. Given a networkwith adjacencymatrix {aij}, wefirstmeasure its average degree á ñk , average
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clustering coefficient c̄ , and all individual nodes’ degrees { ki , i=1,L,N}. Second, we estimate hidden degrees
and parametersβ andμ. Third, as in [24]we estimate the angular ordering of nodes using themodel-corrected
LE, and adjust the angles according to the expected angular separation between consecutive nodes given by the
1model. This yieldsMercator’s fastmode version, which produces afirst embedding. Fourth, the angular
coordinates are refined usingML. Finally, hidden degrees are readjusted given the newly inferred angular
positions. All the steps together conformMercator refinedmode.More precisely,Mercator executes the
following steps.

3.1. Fastmode

1. Propose an approximate value forβ and compute m = b
p

p
bá ñ

sin
k2

.

2. Using equations (1)and(13), adjust the hidden variables {κi} such that the expected degree of each node in
the 1modelmatches the observed degree in the original network. This step assumes that nodes are
homogeneously distributed and uses the values ofβ andμ from step 1. The initial guess isκi=ki (the
degree of node i in the original network).

3. Using results from steps 1 and 2, evaluate the theoretical value of the average clustering coefficient of the
network in the 1model. If this value differs from the onemeasured for the original network, adjust the
value ofβ and return to step 1.Otherwise, proceed to step 4.

4. For every connected pair of nodes with hidden variables κi and κj and original degrees ki, kj>1,estimate

their expected chord length in 2 as =
qáD ñ

d 2 sinij 2

ij , where qáD ñij is the expected angular separation

between connected nodes i and j in the 1model.

5. Construct a weighted Laplacian matrix Lij=Dij−ωij, where D is the diagonal matrix with entries
w= åDii j ij andweights are given by w = -a eij ij

d tij
2

with t being the variance of dij. Then solve the
generalized eigenvalue problem

l=L Dv v.

Wenote ( )= v v vv , , , N1 1,1 1,2 1, and ( )= v v vv , , , N2 2,1 2,2 2, thefirst two eigenvectors with the smallest
nonzero eigenvalues.

6. Assign an angular position to each node i as ( )q = v vatan2 ,i i i2, 1, .

7.Make a sorted list of the nodes based on their angular position {θi}. Nodes of degree 1 that were excluded at
step 4 are now reinserted in the sorted list randomly before or after their unique neighbor. Note that the
angular coordinates computed at step 6 are only used to determine the order inwhich nodes are located
angularly. Their precise angular coordinates are evaluated at the next step.

8. For each pair of consecutive nodes in the list, evaluate its angular separation as given by LE from step 7 and,
similarly to [25], its expected angular separation using the 1model conditioned onwhether the two nodes
are connected or not, their hidden variablesκi andκj, and the fact that they are consecutive. Choose as the
final gap the larger of the two. Finally, all gaps are normalized to sumup to 2π. This produces a set of angular
coordinates for each node {θi , i=1,L,N}.

These 8 steps summarize a fast and accurate embedding procedure that, as discussed in section 4, already
outperforms current state-of-the-artmethods. The next section explains how its accuracy can be further
increased.

3.2. Refinedmode
The embedding canbe significantly improvedwithML techniques using the embedding obtainedwith the fast
modeofMercator as initial conditions. This is due to the fact thatMLuses the informationcontainedboth in the
presence and absence of links in the network,whereas LEonly relies on the information conveyedby the presence of
links. Themajor drawbackofML is the complex configuration space that needs to be explored tofind the optimal
embedding.However, if the starting point of the exploration is good enough, themaximizationof the likelihood
function is easy and efficient. Thus, starting from the embeddingobtainedwith the fastmode,weproceed as follows.

9. Extract the onion decomposition of the network [29] and sort nodes accordingly, starting with the node in
the deepest layer. The onion decomposition is a generalization of the k-core decomposition that provides
the internal organization of each k-shell. It therefore offers amore precise way to order nodes than based on

5
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their position in the k-core decomposition alone. Doing so allows the likelihood optimization phase to
beginwith themost central nodes (based onmesoscale topological information) thereby greatly facilitating
thefinding of an acceptable localmaximum in the configuration space.

10. For each node in the sorted list,find the average angular coordinate of its neighbors.

11. Sample ( ) Nln angular positions around this average value using a normal distribution whose standard
deviation is set to half of the angular distance between this average value and the farthest neighbor.

12. Compute the local log-likelihood of the sampled angular positions

( ) ( ) ( )å= + - -
¹

 a p a pln ln 1 ln 1 , 14i
j i

ij ij ij ij

where pij is computedwith equation (1), and set the new angular position of the node to the sampled angle
with highest log-likelihood.

13. Once the position of every node has been optimized once, repeat step 2 to find a better estimate of the
hidden variablesκiusing the newly inferred angular positions. This last step is optional, although it generally
leads to substantial improvements of the final embedding.

4. Validation in synthetic networks

4.1. Testing the 1model
We testMercator using synthetic networks of different average degrees and clustering coefficients generated
with the 1model, and consider several qualitymeasures to check the accuracy of the embeddings.Wefirst focus

Figure 1.Comparison between the angular coordinates inferred by different embeddingmethods in terms of theC-score (left) and the
Pearson correlation coefficient between original and inferred angular coordinates (middle), as a function of the clustering parameter
β. The right column shows the Pearson correlation coefficient between the original and the inferred connection probabilities of all
pairs of nodes. Every row corresponds to a different value of á ñk : (a) 4, (b) 8, and (c) 12. For every value of the parameters, we generated
and embedded 10 synthetic networks with the 1 model of sizeN=1000 andwith power-law degree distribution exponent γ=2.5.
The plots show the resulting averages and standard deviations.
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on its capability to recover the angular coordinates. Figure 1 shows theC-score [24], defined as the fraction of
pairs of nodes that are correctly ordered in the circle, as well as the Pearson correlation coefficient between the
real and inferred angular coordinates12 and connection probabilities. The results of the two versions ofMercator
are comparedwith those obtained using theCoalescent embedding13 presented in [24], whichwas reported to
give the best node orderings with respect to other embedding algorithms in the literature. Notice thatMercator
is able to outperform the results even in its fastmode, especially for networks with a low average degree.
Strikingly, figure 1 reveals that the refined version ofMercator results in a significant improvement of the
connection probabilities, despite the change in the coordinates being seemingly small. Figure 2(a) depicts, as an
example, the inferred angular coordinates versus the real ones for one of the networks considered.

Mercator also has the clear advantage of systematically inferring the hidden degrees and globalmodel
parameters. Infigure 2(b)we show that the inference ofβ is very precise for all the synthetic networks considered
in this section. This has important implications for applications that requirefinding a good congruency between
the network and themodel. Indeed,Mercator is able tofind embeddings with very high likelihoods. To quantify
this, we consider the relative likelihood difference ¯ ¯= -   1infer real , where ¯ ( )º -  N N2 1 is the
geometric average of the likelihood over all pairs of nodes. Hence, a positive (negative)  indicates that the
inferred embedding has a higher (lower) likelihood than the real coordinates andmodel parameters. Strikingly,
for low values ofβ, the embeddings found byMercator have > 0 (figure 2(c)). Finally,figure 2(d) presents an
example of the empirical connection probability (fraction of connected pairs as a function of the rescaled
distance ( )c mkk= ¢d ), which is extremely congruent with equation (1), especially in its refinedmode. Put
together, these results reveal thatMercator is not just themost accurate algorithm in terms of the reconstruction
of the angular coordinates of synthetic networks—arguably themost difficult aspect of the embedding problem
—, but it also determines correctly all othermodel parameters, including hidden degrees.

4.2. Testing the PSOmodel
Wealso compareMercator with theCoalescent embedding algorithmproposed in [30] for synthetic networks
generatedwith the PSOmodel [3] andwith the non-uniformPSOmodel [7]—growing geometricmodels that
generate complex networks in hyperbolic space, the latter of the twowith inhomogeneous angular distributions.

Figure 2. (a)Example of the inferred angular coordinates versus original angular coordinates for a networkwith á ñ =k 12 andβ=3.
(b) Inferred versus original values of the global parameterβ obtained from the embeddings of the networks infigure 1. (c)Relative
likelihood difference ¯ ¯á ñ = á ñ -   1infer real averaged over all the networks of a given á ñk andβ embeddedwithMercator (refined
modewith final adjustment of the {κi} at step#13). Inmany cases,Mercator is able tofind embeddings with likelihoods above those
that generated the networks. In both plots, the errorbars represent the corresponding standard deviations. (d)Empirical connection
probabilities, obtained using the fast and refinedmodes ofMercator, compared to the theoretical curve for the network in (a).

12
Notice that themodel is invariant with respect to global rotations and inversions of the angular coordinates. Therefore, we consider the

maximal Pearson correlation coefficient over all such possible transformations.
13

Weused the repulsion–attraction pre-weighting rule RA1, LE for dimensionality reduction, and equidistant adjustment (EA). This choice
ismotivated by the fact that LEwas reported to yield the best results on synthetic networks [24].
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Results are shown infigure 3 and in figure S6 in the supplementalmaterial. Even ifMercator often results in
embeddings with better congruencywith the network’s ground-truth (especially regarding the connection
probabilities), it is worthmentioning that the improvementwith respect to theCoalescent embedding algorithm

Figure 3.Comparison between the angular coordinates inferred by different embeddingmethods in terms of theC-score (left) and the
Pearson correlation coefficient between original and inferred angular coordinates (middle), as a function of the clustering parameter
β, for networks generatedwith the PSOmodel. The right column shows the Pearson correlation coefficient between the original and
the inferred connection probabilities of all pairs of nodes. Every row corresponds to a different value of á ñk : (a) 4, (b) 8, and (c) 12. For
every value of the parameters, we generated and embedded 10 synthetic networks of sizeN=1000 andwith power-law degree
distribution exponent γ=2.5. The plots show the resulting averages and standard deviations.

Figure 4. (a)Hyperbolic embedding of theworld airports network obtained byMercator in the refinedmode. Nodes are colored
according to the continent inwhich they are located, an information that is not used to obtain the embedding. (b)Comparison of the
expected connection probability based on the inferred value ofβ (expected) and the actual connection probability computedwith the
inferred hidden variables {ki, θi} (inferred) obtained using the fast and refinedmodes.
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is less pronounced for thesemodels than it is for the 1model. However, it is important to stress that these two
growingmodels do not reproduce a crucial feature of real-world networks, namely, the increasing average
degree of the subgraphs given by the nodes of degree larger than a given threshold kT, found in [1, 4]; this is a
direct consequence of the fact that, in these growingmodels, nodes are added sequentially and every newnode
adds exactlym links. Furthermore, since degrees are strongly correlatedwith nodes’ ages, degree-thresholding is
basically equivalent to selecting the subgraph given by all the NkT

nodes older than some age, which containsm
links per node and, hence, its average degree is ( )á ñ = = = á ñk k mN N m k2 2T k kT T

. The 1model, on the other
hand, reproduces this crucial topological feature [1] (and it is also able to generate degree distributionswhich are
not clean power-laws), so it is reasonable to assume that a higher fidelity in recovering the 1-model ground-
truth is preferable in order to uncover the geometric information encoded in real networks.

5. Embedding of real networks

Another strength ofMercator is its ability to embed networks with arbitrary degree distributions. As an
illustration, we embedded several real-world complex networks fromdifferent domainswhose degree
distributions include clean scale-free, heavy-tailed, and arbitrary distributions.More specifically, the networks
under study are: theworld airport network14, the neural network of the visual cortex of theDrosophila
Melanogaster at the neuron level [31], the neural network of theC. Elegansworm [32], a human connectome
[33, 34], themetabolic network of the bacterium E. Coli [15, 35], theworld tradeweb [16], a US commute
network [36], a cargo ships network [37], a US commodities network [36], and the Internet at theAutonomous
Systems level [10].

One particularly telling example is the airports networkwhose truncated power-law degree distributionwith
exponent γ<2 cannot be easily embeddedwithmethods based on the PSOmodel. In the case of real networks,
we do not have access to the ‘real’ coordinates to compare with those obtained fromour embeddings. Yet, in
some cases,metadata related to the similarity between nodes is available and can be used to test whether an
embedding ismeaningful or, instead, is an artifact of the algorithm. In the case of the airports network,
geography is suchmetadata. Figure 4(a) shows the hyperbolic embedding obtained byMercator in the refined
modewith nodes colored according to the continent they belong to (separatingNorth and SouthAmerica).

Figure 5.Topological validation of the embedding of the airports network. Thefirst row shows (a) the complementary cumulative
degree distribution, (b) the average nearest neighbors degree, ¯ ( )k knn , and (c) the clustering spectrum, ¯ ( )c k . Symbols correspond to the
value of these quantities in the original network, whereas the red lines indicate an estimate of their expected values in the ensemble of
randomnetworks inferred byMercator in the refinedmode (the results obtained using the fastmode ofMercator are shown in blue).
This ensemble was sampled by generating 100 synthetic networks with the 1 model and the inferred parameters and positions by
Mercator. The orange regions correspond to an estimate of the 2σ confidence interval around the expected values. The second row
shows scattered plots of (d) the degree of every nodes, (e) the sumof the degrees of their neighbors, and (f) the number of triangles to
which they participate. The plots show the estimated values of these threemeasures in the same ensemble of randomnetworks
considered above versus the corresponding values in the original network. The error bars show the 2σ confidence interval around the
expected values. The quantity ζ corresponds to the fraction of nodes forwhich the valuemeasured on the original network lies outside
the 2σ confidence interval.

14
Downloaded fromhttps://openflights.org/data.html.
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Airports belonging to the same continent appear clustered in similar angular positions, thus supporting the
relation between the angular space of the embedding and similarity among nodes. Similar analyses were carried
out for the Internet at the autonomous systems level [10], metabolic networks [15], and theworld tradeweb [16].
A strong correlation between the angular distribution of points and availablemetadata was found in all cases. In
light of these results, we conclude that our geometric embeddings aremeaningful and capture attributes that
contribute to the similarity among the elements of complex networks.

Beyond this qualitative agreement, we tested the extent towhich the embedding inferred byMercator is
accurate enough to reproduce the topology of the airports network. To do so, we first compare the expected
connection probability equation (1)with the inferred value ofβ against the empirical connection probability,
computed using the inferred coordinates of the nodes ({κi, θi}). This remarkable agreement confirms that the
rescaled distanceχ provides ameaningfulmeasure to characterize the interaction between nodes in the network.
Second, we used the set of coordinates {κi, θi} aswell as the parametersβ andμ to generate an ensemble of

Figure 6.Comparison of the computational complexity ofMercator expressed in terms of the running time versus the number of links
in the network (L). (a)Comparison betweenMercator’s fast and refinedmodes using synthetic networks generatedwith the 1 model
with a power law distribution for the expected degreesκwith exponent γ=2.2,β=2 (clustering) and á ñ =k 10. Higher values of γ
lead to smaller running times but similar scaling behavior as the number of links increases. (b)Computational complexity of
Mercator’s refinedmode applied to the real network datasets presented in section 5. (c)Mercator’s computational complexity broken
down into each each step of the algorithm. The same synthetic networks as in (a)were used. Dashed lines proportional to L or L2 have
been added to guide the eye.
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synthetic networks using equation (1).We then compared several topological properties of this ensemble with
thosemeasured on the original network. Specifically, thefirst row offigure 5 shows the results for the
complementary cumulative degree distribution Pc(k), the average nearest neighbors’ degree ¯ ( )k knn , and the
clustering spectrum ¯ ( )c k . Thefinal adjustment of hidden degrees in step#13 of theMercator algorithm strongly
enhances the reproduction of the degree distribution.Notice that the 1model does not include anymechanism
to control degree–degree correlations or the shape of the clustering spectrum (recall thatβ is chosen based on the
average clustering coefficient only). Yet, the generated network ensemble reproduces these two quantities with
remarkable precision. This is particularly interesting in the case of the average nearest neighbors’ degree, which
shows a non-trivial assortative behavior for low degrees both in the real network and the ensemble. This suggests
that the non-uniform angular distribution of nodes inferred byMercator (and so the network geometric
properties) is partly responsible for the observed degree–degree correlations in real complex networks.

The ensemble of synthetic networks generated from the estimated geometric parameters of the airports
network performs also verywell at reproducing topological properties of individual nodes. The second rowof
figure 5 shows scattered plots of the degree of a given node, the sumof degrees of its neighbors, and number of
triangles attached to it in the generated network ensemble versus the same quantitiesmeasured on the original
network. For each node, we also compute the 2σ confidence interval, and ζ shows the fraction of nodeswhose
original property (degree, sumof neighbors’ degree, number of triangles) lies outside this interval. Results show
that the fraction of points outside this interval is around 6%,which is consistent with the 2σ (or≈95%)
confidence interval. These results, supported by those presented in the supplementary information, clearly
illustrate the accuracy of the embeddings provided byMercator. To the best of our knowledge, such accuracy
cannot be obtainedwith other existing embeddingmethods.

6. Computational complexity

Wenow support our claim that the computational complexity ofMercator scales as ( ) N 2 for sparse networks
composed ofNnodes (and = á ñL k N 2 links). Figures 6(a) and (b) show the running time in seconds in
function of the number of links (L) for both synthetic and real networks. In both cases, wefind thatMercator’s
refinedmode does indeed roughly scale as L2 although it is clear that other topological properties influence the
final total running time.With respect to the fastmode, wefind that the computational complexity is roughly
linear within the range in the number of links that was considered. Finally, figure 6(c) breaks down the running
time into the time spent in each of theMercatormajor steps, and doing so shows howmost of the running time is
spent during theML step.

7. Conclusions

In this work, we introduce and deliver the full code ofMercator, themost accuratemethod to embed complex
networks into their latentmetric spaces.We showed that the quality of the embeddings can be significantly
improved by a proper combination ofmachine learning techniques and powerful statisticalmethods. Thanks to
this combination,Mercator is able to overcome some of the drawbacks of other techniques which, for instance,
require perfect power laws in thewhole domain of degrees, a condition that is notmet bymany real networks.
Our results also indicate that the obtained embeddings are able to recover ground truth information not
contained in the network topology.We expectMercator to become a standard tool within the toolbox of
network scientists and anybody interested in retrieving information frombig data systems admitting a network
representation.
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Appendix.Mercator in details

Wenowprovide the full details ofMercator.

A.1. Sketch of themethod
The 1model has two global parameters that need to be inferred:μ, controlling the average degree andβ, which
determines the level of clustering in the network. In addition, every node i is assigned two hidden variables: a
hidden degreeκi and an angular coordinate θi. The followingmethod finds the values ofμ,β andκi for which the
expected degrees in themodel ¯ ( )kk i , that is, in synthetic networks generatedwith uniformly distributed angular
positions, equal the observed degrees in the real network and,moreover, the expectedmean local clustering of
the embeddingmatches the real value. To that end, some values ofμ andβ are proposed.Next, the
correspondingκi are calculated. Finally, the expected clustering coefficient is computed andβ is adjusted if the
predicted value is not within an acceptable range of the original value.

Themethod relies on the assumption that all nodes with the same degree have the same hidden degree.
Therefore, thefirst preliminary step is reading the network and counting the number of nodes in every degree
class k, that we denote byNk.

A.2. Inferring the hidden degrees

This step assumes some given value ofβ and the corresponding m = b
p

p
bá ñ

sin
k2

, where á ñk is the observed

average degree.We then assign to every degree class the hidden degree given byκ(k)=k as the initial guess. The
aimof the following algorithm is to adjust this relation so that ¯ ( ( ))k =  k k k , where ò can be set, for instance,
to ò=0.01. To solve this problem,we need away to reckon the values of ¯ ( ( ))kk k from the relationκ(k). To that
end, it is useful to consider the probability for twonodeswith hidden degreesκ andκ′ to be connected in the
ensemble of networks with global parametersR=N/(2π),μ,β and uniformly distributed angular coordinates.
This probability is given by

( )
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Starting from the initial guessκ(k)=k, we perform the following steps to refine the relationκ(k):

1. Initialize expected degrees: For every degree class k, set ¯ ( ( ))k =k k 0.

2.Compute expected degrees: For every pair of degree classes ( )¢k k, , compute ( )( ) ( )º =k k ¢P p a 1k k using
equation (A1). Set ¯ ( ( )) ¯ ( ( ))k k+ ¢k k N P k kk and ¯ ( ( )) ¯ ( ( ))k k¢ +  ¢k k N P k kk . By doing so, we add the
expected number of connections of a node in degree class kwith nodes in degree class ¢k and vice-versa.
Notice that, when = ¢k k , we set ¯ ( ( ))) ( ) ¯ ( ( ))k k+ - k k N P k k1k instead.

3.Compute largest deviation: Let {∣ ¯ ( ( )) ∣}k= - k k kmax kmax be the maximal deviation between degrees and
expected degrees. If òmax>ò, the values ofκ(k)need to be corrected. Then, for every degree class k, set
∣ ( ) [ ¯ ( ( ))] ∣ ( )k k k+ - k k k k u k , where u is a randomvariable drawn fromU(0, 1). The rationale behind
this transformation is that every degree-class hidden degree is corrected according to its expected-degree
excess or deficiency; the randomvariable u prevents the process from getting trapped in a localminimum.
Next, go to step 1 to compute the expected degrees corresponding to the new set ofκ(k). Otherwise, if
òmax�ò, hidden degrees have been inferred for the current global parameters.

A.3. Inferring parameterβ
To inferβ, we need to compute the expectedmean local clustering c̄ given the current values of the global
parameters aswell as of the hidden-degree distribution provided byκ(k) andNk found using the algorithm from
the last subsection. Themethod is based on the following idea. Supposewewant to estimate the expected
clustering ¯ ( )c k of some nodewith degree k. According to the definition ofmean local clustering, this quantity is
given by the probability for two randomly chosen neighbors of the node to be connected, which can be
computed in two steps: first, we randomly choose two of its neighbors and draw their distances to the node from
the distribution of distances between connected nodes in themodel. Second, we compute the distance between
the twoneighbors and, with it, the probability for them to be connected. Two important points require some
clarification:
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a. The model is uncorrelated at the hidden level. Therefore, in the calculation of the clustering, we draw the
two neighbors from the uncorrelated distribution ( ∣ ) ( )¢ = á ñP k k kP k k .

b. The distribution of angular distance Δθ between two connected nodes with hidden degrees κ and k¢,
( ∣ )r qD =kk¢a 1 , where kk¢a stands for the corresponding adjacency-matrix element, is given by

( ∣ ) ( ∣ ) ( )
( )

( )r q
q r q
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= D D

=
kk

kk

kk
¢

¢

¢
a

p a
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In the above expression, ( ∣ ) ( ( ( ) )q q mkk= D = + D ¢kk
b

¢p a R1 1 1 is the connection probability between
the two nodeswith hidden degreesκ and k¢ separated by a distanceΔθ. The distribution of distances in the
1model is simply ρ(Δθ)=1/π, since angular coordinates are uniformly distributed. Finally, ( )=kk¢p a 1
is given in equation (A1). Equation (A2) therefore reads
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The expectedmean local clustering can nowbe found following three steps:

1. Initialize mean local clustering: Let ¯ ( )c k represent the expected mean local clustering of degree class k. Set

¯ ( ) =c k 0 for all k.

2.Compute expectedmean local clustering spectrum: For every degree class k, dom times:

i. Draw two variables ki from ( ∣ ) =P k k i, 1, 2i .

ii. Draw the corresponding random variables Δθi from the distributions ( ∣ )( ) ( )r qD = =k ka i1 , 1, 2i k ki

given in equation (A3).

iii. Consider the two semicircles spanned by the diameter of the circle passing through the degree-k node.
It is equally likely for its two neighbors to lay in the same or in different semicircles. Hence, with
probability 1/2, set (∣ ∣ ∣ ∣)q q q p q qD = D + D - D + Dmin , 212 1 2 1 2 or ∣ ∣q q qD = D - D12 1 2 .

iv. Set ¯ ( ) ¯ ( )+ c k p m c k12 , where ( )( ) ( )

=
+ q

mk k

bD
p12

1

1 R

k k
12

1 2

is the probability for nodes 1 and 2 to be

connected.

3.Compute expected mean local clustering: The expected mean local clustering c̄ can be readily computed
as ¯ ¯ ( )= åc c k N Nk k .

If the error in the expectedmean local clustering ∣¯ ¯ ∣ ¯- < c c c
emp , where ¯c is the desired precision and c̄ emp is

the observedmean local clustering coefficient, we can accept the current value ofβ and proceed to the inference
of the angular coordinates. Otherwise,βneeds to be corrected and the hidden degreesmust be recalculated
accordingly by repeating the process explained in the previous subsection. Notice that, since the expectedmean
local clustering coefficient is amonotonic function ofβ, the process can be iterated efficiently using the bisection
method. In practice, however, we use amodified version of the bisectionmethod inwhich the upper bound is let
free until we reach a value ofβ for which the expected clustering is higher than the observed one.More precisely,
we start with a value forβ picked uniformly between 2 and 3. Then, while the expected clustering is lower than
the observed one, we increaseβ bymultiplying it by 1.5.Whenwe reach a value forwhich the observed clustering
is surpassed, we start the regular bisectionmethod.We also note that, for ¯ = 0.01c ,m=600 is enough.Of
course, ifmore precision is required,mmust be increased to guarantee that the fluctuations in the computed
¯ ( )c k are small enough.

A.4. Angular coordinates
Having inferred the values for the parametersβ,μ and {κi}, we are in a position to infer the angular coordinates,
{θi}, of each node. This is performed by following two steps: amachine learning step providing an initial ordering
of the nodes aswell as realistic positions, and a second step inwhich nodes aremoved in order tomaximize the
likelihood that the 1model generated the original edge list.
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A.5. Initial ordering and positions
This step is amodified version of the LE algorithm introduced in [27] and used in [23, 24]. Thismachine learning
algorithmwas originally conceived for dimensionality reduction. Themain idea is as follows. Given a set of
points in n, the algorithm first constructs a RGGby, for instance, connecting points located at a distance below
some threshold in n-dimensional Euclidean space.Once this graph is known, the points aremapped to m with
m<n by diagonalizing the corresponding Laplacian and assigning to every point i the coordinates

( )= v vy , ,i
i

m
i

1 , where vj
i is the ith component of the jth Laplacian eigenvector with non-null eigenvalue (the

eigenvectors are ordered according to their eigenvalues). It can be shown that these coordinatesminimize the
squared distances between connected pairs in the RGG

∣ ∣ ( )å= - y y , A4
i j

i j
,

2

while preventing all nodes from collapsing into a single point. Furthermore, the relevance of every connection
(i, j) in the RGG in the above expression can bemodulated by assigning aweightωij to it according to

( )
∣ ∣

w = -
-

e , A5ij
i j

t

x x 2

where ∣ ∣-x xi j is the distance between the points in n and t is a scaling factorfixed as themean of the squares of
all the distances [24]. The same procedure then leads to theminimization of

∣ ∣ ( )å w= - y y , A6
i j

i j ij
,

2

The approach taken by [23, 24] is to consider the network to be embedded as the RGGgenerated in a higher-
dimensional space.Hence, by proceeding to the dimensionality reduction inm (typicallym=2) dimensions,
we obtain an embedding inRm, which can be radially normalized so that all points lay in -m 1. The
improvement in [24] is to assignweights according to some heuristic and, once the coordinates on the plane are
known, these are used to infer the ordering of nodes only. Thefinal coordinates are computed by distributing all
nodes on the circle with q q p- = "+ N i2 ,i i1 .We nowpropose an improvement based on assigning the
weights in the Laplacianmatrix aswell as the gaps q q-+i i1 according to the 1model.

1. LE for node ordering: Since degree-one nodes do not add geometric information, we remove them at this
step andworkwith the subgraph of nodes with k>1.We then apply the LEmethod to such graph after
weighting every link according to equation (A5), wherewe use

∣ ∣ ( )
q

- =
áD ñ

x x 2 sin
2

A7i j
ij

as a proxy for the distance ∣ ∣-x xi j and qáD ñij is the expected angular distance between nodes i and j in the
1model conditioned to the fact that they are connected. The above expression simplymaps such expected
angular distance onto the corresponding cord length, since LE is designed towork on Euclidean space and,
therefore, it seems natural to consider the 1model as embedded in 2 for the algorithm. The expected
distance between the nodes can be readily computed from equation (A3) as
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Since a similar approach developed in [24] has been shown to yield very good results in terms of the angular
ordering of the nodes, we use thismachine learning step to define a sequence of angular coordinates

( ) ( )q q¢ = ¼ ¢S , , A9N1

for the nodes in the subgraph, where the angles in ¢S are ordered in increasing order. Each θi is computed as

( ) ( )q = v vatan2 , , A10i
i i
2 1

where v i
1 and vi

2 are the x and y coordinates of node i found by LE.Oncewe have the ordering of nodes with
k>1, we reincorporate the degree-one nodes. This can be easily done by replacing every node iwith t
degree-one neighbors by the sequence ( )⌊ ⌋ ⌊ ⌋¼ ¼+n n i n n, , , , , ,i

t
i

t
i

t
i

1 2 2 1 in ¢S , where nj
i is the jth degree-one

neighbor of node i (in any arbitrary order) and⌊·⌋is thefloor function. Such operation yields a new sequence
of nodes S including all the nodes in the original graph.

2.Order-preserving adjustment: This last step of the approximate embedding locates the nodes on the circle
preserving the ordering of the nodes in S. To that end, we set every node’s coordinate such that the gap
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between two consecutive nodes in S is proportional to the expected gap between two consecutive nodes with
the same hidden variables and adjacency-matrix element in the 1model, except for the gaps inwhich LE
predicts a gap larger than themodel. The reason for this heuristic is that, in networkswith community
structure, large gaps indicate separation between communities, and these are detected by the dimensionality
reduction algorithm.We thus apply these steps:

i.Computing the expected gaps: Let nodes i and i+1 be consecutive in S. The distribution for the length of
the gap gi between them in the 1model can be obtained fromBayes’ rule, as in equation (A2)
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where now ρ(gi) is an exponential distributionwithmean 2π/N
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The expected gap á ñgi can thus be computed as

( ∣ ) ( )

( ∣ ) ( )
( )

ò

ò

r

r
á ñ =

p

p

+

+

g

g p a g g g

p a g g g

d

d

. A14i

i i i i i i

i i i i i

0

1,

0

1,

Both integrals can be carried out numerically. Once the expected gap á ñgi has been computed, set

( ) ( )= á ñg g gmax , , A15i i i
LE

where g
i
LE stands for the angular separation between the nodes as given by the LE algorithm.

ii.Normalizing the gaps: By applying the last step to every pair of consecutive nodes (including the pair
(N, 1)), we obtain a sequence ofN expected gapswhich, however, needs not sumup to 2π, so we
normalize each gi as
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Finally,we can assign everynode’s coordinate sequentially, startingwithθ1=0, as q q= +-i i 1

˜ = ¼-g i N, 2, ,i 1 .

A.6. Likelihoodmaximization
This stage of the embedding algorithm adjusts the angular coordinates thatmaximize the likelihood for the
observed network to be generated by themodel. As opposed to previously proposed likelihood-maximization
schemes, we do not need to explore a vast region of configuration space, since themachine learning stage
provides a set of coordinates located near an optimal configuration.Hence, we visit every node once and propose
several new angular coordinates for it, keeping the onewith higher log-likelihood. The steps we follow are:

1.Define a new ordering of nodes: We visit the nodes in the order defined by the network’s onion
decomposition. In the sequence, the ordering among nodes belonging to the same layer in the
decomposition is random.

2. Find new optimal coordinates:For every node i, we select the optimal coordinate among candidate positions
generated in the vicinity of themean angular coordinate of its neighbors. This is achieved in three steps:

i.Compute mean coordinate of node i’s neighbors: Let node i have ki neighbors, which we now label with
index j=1,K, ki. Since nodes lay on a circle, wemust compute theirmean angular coordinate q̄i using
the vector sumof their positioning vectors in 2. The polar angle of the resulting vector sum is given by
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¯ ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å åq

k
q

k
q= atan2

1
sin ,

1
cos , A17i

j j
j

j j
j2 2

where the hidden degrees in the above expressionweight the contribution of every neighbor’s positioning
vector, as proposed in [21].

ii. Propose new positions around q̄i: We generate ( )N100 max ln , 1 candidate angular coordinates from a
normal distributionwithmean q̄i and standard deviationσ given by

( )⎜ ⎟⎛
⎝

⎞
⎠s

p q
=

D
max

12
,

2
, A18max

whereΔθmax is the angular distance between q̄i and themost distant neighbor of node i, i.e.

{ (∣ ¯ ∣ ∣ ¯ ∣)} ( )q q q p q qD = - - -max min , 2 . A19j i j i jmax

This last step is adapted from [38].

iii. Select the most likely candidate position: Compute the local log-likelihood of every candidate position as
well as of node iʼs current angular coordinate according to

( ) ( ) ( )å= + - -
¹

 a p a pln ln 1 ln 1 . A20i
j i

ij ij ij ij

Locate node i at the angular positionmaximizing the local log-likelihood.

A.7. Adjusting hidden degrees
Thefinal process adjusts hidden degrees according to the hidden coordinates found so that ¯ ( )k =k ki i. The
algorithm is similar to the initial inference of hidden degrees:

1.Compute expected degrees: For every node i, set

( )
¯( ) ( )åk =

+
q

mk k

b
¹ D

k
1

1

. A21i
j i R ij

i j

2.Correct hidden degrees: Let {∣ ¯ ( ) ∣}k= - k kmax i i imax be the maximal deviation between degrees and
expected degrees. If òmax>ò, the set of hidden degrees needs to be corrected. Then, for every node i, set
∣ [ ¯ ( )] ∣k k k+ - k k ui i i i, where u is a random variable drawn fromU(0, 1). As in sectionA.2, the random
variable u prevents the process from getting trapped in a localminimum.Next, go to step 1 to compute the
expected degrees corresponding to the new set of hidden degrees. Otherwise, if  max , hidden degrees
have been inferred for the current global parameters and angular coordinates.
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7Institució Catalana de Recerca i Estudis Avançats (ICREA),
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I. COMMUNITY DETECTION

A. Inhomogeneous S1 model

We tested the performance of Mercator to detect community structure with 4 synthetic networks generated with
the S1 model. A community structure was induced in each of these networks by a nonuniform distribution of the
angular positions (θ), see Fig. S1, and the hidden variables κ were drawn from the probability density function

ρ(κ) ∝ κ−2.5 , (S1)

with the proportionality constant chosen such that 〈k〉 ' 〈κ〉 ' 10. We used β = 3.2 and fixed µ = β
2π〈k〉 sin π

β . We

then isolated the largest connected component which yielded the 4 networks of approximately N = 1000 nodes used
in this section.

Once we obtained the inferred positions from Mercator, we applied two techniques to identify angular communities.
The first one is the geometric critical gap method developed in [5] and later in [6] in which two nodes, i and j, belong
to the same community if their angular separation, ∆θij , is less than

∆θc =
2π[ln(N) + γ]

N
, (S2)

where N is the number of nodes in the network and γ ' 0.57721 is the Euler-Mascheroni constant. The critical gap in
Eq. (S2) is the expected maximal angular separation between two consecutive nodes found in a uniform distribution
of N points in a circle, which is taken as a null model without communities. Thus, a group of nodes separated

∗ Both authors contributed equally to this work
† Corresponding author: marian.boguna@ub.edu



S2

by two gaps larger than ∆θc correspond to a deviation from this null model, thereby defining a community. Notice,
however, that this definition is based only on geometry alone, without any direct information coming from the network
structure, which is anyway included in the embedding itself.

The second method, the topological critical gap method [7], is similar to the previous one but uses modularity to
determine what is the optimal critical gap to be used to partition the set of nodes. Our algorithm goes as follows.
We set ∆θc at a value larger than the largest angular gap between two angularly consecutive nodes; there is therefore
only one single community. We then iteratively decrease ∆θc and split any community into two smaller ones at the
point where two consecutive nodes are separated by an angle larger than the new value of ∆θc. Note that we ignore
any split that would create a community containing 5 nodes or less. The number of communities thus increases as
the value of ∆θc decreases until it becomes smaller than the smallest angular gap between consecutive nodes. This
last situation corresponds to the case where every node belongs to its own community. At the end of this process, we
preserve the community structure corresponding to the value of ∆θc for which the modularity is maximal.

It is important to mention that these two methods will not recover the same partition used to the generate the
4 original networks. Indeed, the topology of the networks is subject to fluctuations due to the distribution of the
hidden variables κ and θ as well as to the network generation process itself (recall that the S1 model only prescribes
the probability for the links to exist). Besides, some of the blocks generated are small and/or very close to nearby
blocks. Consequently, we do not expect these two methods to detect the exact same number of communities as the
number of angular blocks used to generate the networks. The aim of this analysis it rather to assess whether or not
Mercator is able to infer an embedding whose organization is coherent with the original angular structure.

We measured this coherence by computing the normalized mutual information between the angular partition used
to generate the networks (each block on Fig. S1 corresponds to a community) and the communities identified by
the geometrical and topological critical gap methods. Table S1 shows the results. As expected, neither of the two
methods detect the exact same original angular groups, however we see that Mercator is able to infer angular positions
that are extremely congruent with the original angular positions. Figures S2–S5 (right column) further illustrate the
community structures detected with both methods and compare them with the original angular structure.

The left column of Figs. S2–S5 show the embedding obtained with Mercator when gi = gLEi at Eq. (A15) in the
main text, i.e., when the initial positions are only given by the LE method without enforcing a minimal angular
distance between nodes, which is set in Mercator as the expected angular distance two consecutive nodes in the S1
model. Our results show that although the angular positions provided by the LE method lead to embeddings where
the original angular blocks can be identified to some extent, the minimal angular distance coupled with the likelihood
maximization step allow to infer an embedding for which distances between nodes can be translated into topological
information in the form of a probability of connection.

Network NMI (fast mode) NMI (refined mode)

Network 1 (Geom. CGM) 0.88 0.88

Network 1 (Topol. CGM) 0.89 0.80

Network 2 (Geom. CGM) 0.57 0.80

Network 2 (Topol. CGM) 0.97 0.96

Network 3 (Geom. CGM) 0.80 0.80

Network 3 (Topol. CGM) 0.85 0.78

Network 4 (Geom. CGM) 1.00 0.97

Network 4 (Topol. CGM) 0.87 0.87

TABLE S1. Communities detected using the topological and geometrical critical gap methods on the embeddings obtained
with the fast and refined modes of Mercator for the 4 synthetic networks described in the text. The overlap between the original
angular blocks (see Fig. S1) and the detected communities is measured using the normalized mutual information (NMI).
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FIG. S1. Angular blocks used to generate the 4 synthetic networks with community structure. These blocks are used as the
original communities in the calculation of NMI on Table S1.
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FIG. S2. Network 1. Left column shows the embedding obtained with the fast mode of Mercator when the angular positions
are obtained directly from the LE method, i.e. gi = gLE

i on Eq. (A15) in the main text. Right column shows the outcome of the
refined mode of Mercator, i.e. using Eq. (A15) in its actual form. First row shows communities detected with the geometrical
critical gap method and the second row with topological critial gap method. Nodes are colored according to the communities
detected by the corresponding method. The grey areas indicate the position of the gaps separating the original angular blocks.
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FIG. S3. Network 2. Left column shows the embedding obtained with the fast mode of Mercator when the angular positions
are obtained directly from the LE method, i.e. gi = gLE

i on Eq. (A15) in the main text. Right column shows the outcome of the
refined mode of Mercator, i.e. using Eq. (A15) in its actual form. First row shows communities detected with the geometrical
critical gap method and the second row with topological critial gap method. Nodes are colored according to the communities
detected by the corresponding method. The grey areas indicate the position of the gaps separating the original angular blocks.
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FIG. S4. Network 3. Left column shows the embedding obtained with the fast mode of Mercator when the angular positions
are obtained directly from the LE method, i.e. gi = gLE

i on Eq. (A15) in the main text. Right column shows the outcome of the
refined mode of Mercator, i.e. using Eq. (A15) in its actual form. First row shows communities detected with the geometrical
critical gap method and the second row with topological critial gap method. Nodes are colored according to the communities
detected by the corresponding method. The grey areas indicate the position of the gaps separating the original angular blocks.
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FIG. S5. Network 4. Left column shows the embedding obtained with the fast mode of Mercator when the angular positions
are obtained directly from the LE method, i.e. gi = gLE

i on Eq. (A15) in the main text. Right column shows the outcome of the
refined mode of Mercator, i.e. using Eq. (A15) in its actual form. First row shows communities detected with the geometrical
critical gap method and the second row with topological critial gap method. Nodes are colored according to the communities
detected by the corresponding method. The grey areas indicate the position of the gaps separating the original angular blocks.
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B. Comparison with the nPSO model

We compare Mercator with the Coalescent embedding algorithm proposed in Ref. [1] for synthetic networks
generated with the non-uniform Popularity-Similarity-Optimization (PSO) model [3] —a growing geometric model
generating complex networks in hyperbolic space with inhomogeneous angular distributions. Figure S6 shows results
for networks generated with γ = 2.5, N = 1000, and C = 9 different geometric communities.
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FIG. S6. Comparison between the angular coordinates inferred by different versions of Mercator and the Coalescent embedding
method (with and without equidistant adjustment—EA and Or., respectively) in terms of the C-score (left) and the Pearson
correlation coefficient between original and inferred angular coordinates (middle), as a function of the clustering parameter
β, for networks generated with the nPSO model with C = 9 geometric communities. The right column shows the Pearson
correlation coefficient between the original and the inferred connection probabilities of all pairs of nodes. Every row corresponds
to a different value of 〈k〉: a. 4, b. 8, and c. 12. For every value of the parameters, we generated and embedded 10 synthetic
networks of size N = 1000 and with power-law degree distribution exponent γ = 2.5. The plots show the resulting averages
and standard deviations.
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II. EMBEDDING REAL NETWORKS

Figures S7–S16 show the quality of the embeddings obtained with Mercator in the refined mode for the 9 other real
complex networks mentioned in the main text.

FIG. S7. Topological validation of the embedding of the neural network of the visual cortex of the Drosophila Melanogaster
at the neuron level [8]. The first row shows a. the complementary cumulative degree distribution, b. the average nearest
neighbors degree, k̄nn(k), and c. the clustering spectrum, c̄(k). Symbols correspond to the value of these quantities in the
original network, whereas the red lines indicate an estimate of their expected values in the ensemble of random networks inferred
by Mercator. This ensemble was sampled by generating 100 synthetic networks with the S1 model and the inferred parameters
and positions by Mercator. The orange regions correspond to an estimate of the 2σ confidence interval around the expected
values. The second row shows scattered plots of d. the degree of every nodes, e. the sum of the degrees of their neighbors, and
f. the number of triangles to which they participate. The plots show the estimated values of these three measures in the same
ensemble of random networks considered above versus the corresponding values in the original network. The error bars show
the 2σ confidence interval around the expected values. The quantity ζ corresponds to the fraction of nodes for which the value
measured on the original network lies outside the 2σ confidence interval. g. Comparison of the expected connection probability
based on the inferred value of β (expected) and the actual connection probability computed with the inferred hidden variables
{ki, θi} (inferred). h. Visualization of the embedding in hyperbolic space using the H2 model. Only links whose probability
of existence in the S1 model is above 0.5 are shown to avoid clutering the plot. i. Density of the inferred angular coordinates
{θi}. A horizontal dashed line is shown to indicate the uniform density for comparison.
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FIG. S8. Topological validation of the embedding of the neural network of the C. Elegans worm [9]. See the caption of Fig. S7
for details.
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FIG. S9. Topological validation of the embedding of a human connectome [10, 11]. Nodes are colored according to the
hemisphere in which they are located, information that is not used to obtain the embedding. See the caption of Fig. S7 for
details.



S12

FIG. S10. Topological validation of the embedding of the metabolic network of the bacterium E. Coli [5, 12]. See the caption
of Fig. S7 for details.
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FIG. S11. Topological validation of the embedding of the world trade web [7]. See the caption of Fig. S7 for details.
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FIG. S12. Topological validation of the embedding of a US commute network [13]. See the caption of Fig. S7 for details.
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FIG. S13. Topological validation of the embedding of a cargo ships network [14]. See the caption of Fig. S7 for details.
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FIG. S14. Topological validation of the embedding of a US commodities network [13]. Only the 30% most likely links according
to the S1 model are shown on h to avoid clustering the plot. See the caption of Fig. S7 for details.
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FIG. S15. Topological validation of the embedding of the Internet at the Autonomous Systems level [15]. Only nodes with
degree greater than 3 are shown to avoid cluttering the plot. See the caption of Fig. S7 for details.
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FIG. S16. Topological validation of the embedding of the Internet at the Autonomous Systems level [15] using nodes with an
original degree larger than 3 (before removing nodes). Only nodes with degree greater than 3 are shown to avoid cluttering the
plot. See the caption of Fig. S7 for details.
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[4] M. Ángeles Serrano, Dmitri Krioukov, and Marián Boguñá, “Self-similarity of complex networks and hidden metric
spaces,” Physical Review Letters 100, 078701 (2008).
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