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In a recent Letter, Yang et al. [Phys. Rev. Lett. 109, 258701 (2012)] introduced the concept of observability
transitions: the percolationlike emergence of a macroscopic observable component in graphs in which the state
of a fraction of the nodes, and of their first neighbors, is monitored. We show how their concept of depth-L
percolation—where the state of nodes up to a distance L of monitored nodes is known—can be mapped onto
multitype random graphs, and use this mapping to exactly solve the observability problem for arbitrary L. We
then demonstrate a nontrivial coexistence of an observable and of a nonobservable extensive component. This
coexistence suggests that monitoring a macroscopic portion of a graph does not prevent a macroscopic event to
occur unbeknown to the observer. We also show that real complex systems behave quite differently with regard
to observability depending on whether they are geographically constrained or not.
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I. INTRODUCTION

Considered as the ultimate proof of our understanding,
the controllability (and its dual concept the observability)
of natural and technological complex systems have been the
subject of many recent studies [1–13]. In essence, the question
is whether the global state of a system can be imposed
(inferred) through the control (monitoring) of a few of its
constituents. By mapping the underlying web of interactions
between the constituents of systems onto graphs, analytical
criteria have been proposed to determine whether a system
is controllable (observable), and if so, through which of its
constituents control (monitoring) should be applied. However,
although promising and theoretically correct, doubts have been
raised as to whether these criteria can be used in practice on
real, large systems [4,12].

Whenever a comprehensive and exact theoretical frame-
work is lacking, simpler but solvable theoretical models, which
consider simplified versions of the systems under scrutiny,
become valuable alternatives to highlight and understand key
behaviors of complex systems. Following this trend, Yang
et al. used random graphs to study the observability of power
grids through the use of phasor measurement units that allow
them to monitor the state of a node and of each of its
neighbors [8]. Using this approach, they demonstrated that
the largest observable component emerges in a percolationlike
transition, and argued that structural properties found in real
systems reduce the number of monitoring units required for
achieving large-scale observability.

We formalize their approach into the general concept
of depth-L percolation where the state of nodes up to a
distance L of monitored nodes is known as well. Using a
multitype version of the configuration model [14], we study
analytically the emergence of the extensive giant observable
component (i.e., its size and the conditions for its existence),
and we demonstrate a nontrivial coexistence with another
extensive component: one made of nonmonitored nodes.
We then turn our attention to graphs extracted from real
complex systems and show that many such systems support
the coexistence of two extensive components. Moreover, our
theoretical framework yields analytical arguments to explain
the low thresholds for the large-scale observability observed in

many of these systems. However, we find that geographically
constrained systems (e.g., power grids) are poorly modeled by
random graphs; rather, their topology appears similar to the
one of lattices. Our results also suggest that they behave quite
differently with regard to observability: their structure does not
support coexistence, and achieving large-scale observability
requires more monitoring units than hinted at by calculations
based on the configuration model [8].

This paper is organized as follows. In Sec. II, we introduce
the concept of depth-L percolation and develop an exact
mathematical description for the case L = 1. This allows one
to demonstrate the equivalence between our approach and
the one proposed in Ref. [8], and to identify the possible
coexistence of two extensive components. In Sec. III, we
generalize our mathematical framework to any L, and use it to
study the effect of varying the depth on the coexistence regime.
In Sec. IV, we investigate the observability of graphs extracted
from real complex systems with numerical simulations and our
mathematical framework. Conclusions and final remarks are
collected in the last section. A technical Appendix is supplied
to describe the case L = 2 and to compare it with the results
obtained in Ref. [8].

II. DEPTH-L PERCOLATION

Depth-L percolation is a generalization of traditional site
percolation: nodes are occupied independently with probabil-
ity ϕ and every node up to a distance L of occupied nodes are
also occupied. We say that the latter are indirectly occupied as
opposed to the former which are said to be directly occupied
(see Fig. 1). Depth-0 percolation corresponds to traditional site
percolation (see Sec. III A). For the sake of simplicity (and
to make an explicit correspondence with the mathematical
treatment in Ref. [8]), we first focus on depth-1 percolation—
where first neighbors of occupied nodes are occupied as well—
on graphs generated through the configuration model [15]. The
generalization to any L is, however, straightforward in our
formalism and is the subject of Sec. III.

The configuration model defines a maximally random graph
ensemble whose graphs are random in all respects except for
the degree distribution, {P (k)}k∈N, prescribing the number of
connections that nodes have (i.e., number of first neighbors).

1539-3755/2014/89(2)/022801(12) 022801-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.258701
http://dx.doi.org/10.1103/PhysRevLett.109.258701
http://dx.doi.org/10.1103/PhysRevLett.109.258701
http://dx.doi.org/10.1103/PhysRevLett.109.258701
http://dx.doi.org/10.1103/PhysRevE.89.022801


ALLARD, HÉBERT-DUFRESNE, YOUNG, AND DUBÉ PHYSICAL REVIEW E 89, 022801 (2014)

FIG. 1. (Color online) Illustration of depth-1 percolation on a
graph generated through the configuration model. Directly occupied,
indirectly occupied, and nonoccupied nodes are in red (type 0),
blue (type 1), and black (type 2), respectively. Occupied compo-
nents are identified with orange edges, and nonoccupied compo-
nents with black edges. Edges linking occupied and nonoccupied
components—the ones removed by setting x02 = x12 = x20 = x21 =
1 in Eqs. (4), (8), and (9)—are shown in cyan.

Using probability generating functions (PGFs), many exact
results can be obtained in the limit of large graphs [16–18].
For the present study, we define the PGF associated with the
degree distribution

G0(x) =
∞∑

k=0

P (k)xk, (1)

and the one generating the number of edges leaving a node
reached by one of its edges (excess degree distribution)

G1(x) = G′
0(x)

G′
0(1)

= 1

〈k〉
∞∑

k=1

kP (k)xk−1. (2)

Here the prime denotes the derivative, and 〈k〉 corresponds
to the first moment of the degree distribution (i.e., average
degree). The configuration model generates graphs through a
stub pairing scheme: a random number of stubs (the degree) is
assigned to each node according to {P (k)}k∈N, and edges are
formed by randomly matching stubs together. In the context of
depth-L percolation, directly occupied nodes are then selected
with probability ϕ, and the identification of indirectly occupied
nodes follows.

A. Mapping to multitype random graphs

To study the emergence of the extensive occupied compo-
nent, we introduce a mapping linking depth-L percolation to
percolation on multitype random graphs [14]. To facilitate this
mapping, we consider an alternative procedure to generate
graphs with directly and indirectly occupied nodes. As
previously stated, a degree is assigned to each node according
to {P (k)}k∈N, but instead of pairing stubs right away, directly
occupied nodes (type 0) are first selected with probability ϕ.
Stubs of type 0 nodes are then randomly matched with any
stubs in the graph; untagged nodes now connected to type 0
nodes are said to be indirectly occupied (type 1). Note that
two type 0 nodes can be linked together. Nodes that have

neither been tagged as type 0 nor as type 1 are said to be
nonoccupied (type 2). All remaining free stubs are finally
paired randomly to close the graph. This alternative perspective
is identical to the one discussed in the previous section in the
limit of large graphs, and is analogous to on-the-fly network
construction [19]. Although it may seem unnecessary in the
simple case L = 1, this slight change of perspective greatly
eases the generalization to an arbitrary value of L.

By definition, a fraction w0 = ϕ of the nodes is of type 0.
Because these nodes are assigned randomly and independently,
the distribution of the number of connections they have with
other node types (their joint degree distribution) is

P0(k) = δ0k2P (k0 + k1)
(k0 + k1)!

k0!k1!
ϕk0 (1 − ϕ)k1 , (3)

where k = (k0,k1,k2) and δab is the Kronecker delta. In other
words, if a neighbor of a type 0 node is not of type 0, it is
inevitably of type 1. The associated PGF is

g0(x) =
∑

k

P0(k)xk0
00x

k1
01x

k2
02 = G0(ϕx00 + [1 − ϕ]x01). (4)

A randomly chosen node will be of type 1 if it has not been
selected as a type 0 node and if at least one of its neighbors is
of type 0. This happens with probability (1 − ϕ)[1 − (1 − ϕ)k]
for a node whose degree is equal to k. Averaging over the
degree distribution, we find

w1 = (1 − ϕ)[1 − G0(1 − ϕ)]. (5a)

Asking for normalization, we find that type 2 nodes represent
a fraction

w2 = (1 − ϕ)G0(1 − ϕ) (5b)

of the nodes. Likewise, we define εi as the probability that a
randomly chosen edge leads to a type i node. Clearly ε0 = ϕ,
and by similar arguments as above but by averaging over the
excess degree distribution instead, we find that

ε1 = (1 − ϕ)[1 − G1(1 − ϕ)], (6a)

ε2 = (1 − ϕ)G1(1 − ϕ). (6b)

From the alternative procedure described above, we find
that the joint degree distribution of the union of type 1 and
type 2 nodes is

P1
⋃

2(k) = P (k0+k1+k2)
(k0+k1+k2)!

k0!k1!k2!
ε

k0
0 ε

k1
1 ε

k2
2 . (7)

Since the difference between nodes of these two types is the
presence of type 0 nodes in their immediate neighborhood, we
can readily write the PGF associated with their joint degree
distribution

g1(x) = A1

∑
k

(1 − δ0k0 )P1
⋃

2(k)xk0
10x

k1
11x

k2
12

= G0(ε0x10+ε1x11 + ε2x12)−G0(ε1x11 + ε2x12)

1 − G0(1 − ϕ)
(8)

and

g2(x) = A2

∑
k

δ0k0P1
⋃

2(k)xk0
20x

k1
21x

k2
22 = G0(ε1x21 + ε2x22)

G0(1 − ϕ)
,

(9)
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where A1 and A2 are normalization constants. With {wi}i=0,1,2

and the PGF {gi(x)}i=0,1,2 in hand, we are now in a position to
mathematically describe the emergence of the giant occupied
component.

B. Giant occupied component

It has been shown in Ref. [14] that the relative size of the
giant component, S, in multitype random graphs is computed
via

S =
M−1∑
i=0

wi[1 − gi(a)], (10)

where M is the number of node types, and where a =
{aij }i,j=0,...,M−1 is the set of probabilities that an edge leaving
a type i node towards a type j node does not lead to the
giant component. These probabilities correspond to the stable
fixed point—the smallest solution in [0,1]M

2
—of the following

system of equations

aij = ∂gj (a)/∂xji

∂gj (1)/∂xji

(11)

with i,j = 0, . . . ,M − 1. We are interested in the relative size
of the giant occupied component, the component made of type
0 and type 1 nodes solely. To do so, we isolate them from type
2 nodes by setting x02 = x12 = x20 = x21 = 1 in Eqs. (4), (8),
and (9). Noting that a10 = a00, this yields

a00 = G1(ϕa00 + (1 − ϕ)a01), (12a)

a01 = G1(ϕa00 + ε1a11 + ε2), (12b)

a11 = G1(ϕa00 + ε1a11 + ε2) − G1(ε1a11 + ε2)

1 − G1(1 − ϕ)
, (12c)

and the relative size of the giant occupied component, S,
becomes [summing Eq. (10) only over i = 0, 1]

S = 1 − ϕG0(ϕa00 + (1 − ϕ)a01)

− (1 − ϕ){G0(ϕa00 + ε1a11 + ε2)

+G0(1 − ϕ) − G0(ε1a11 + ε2)}. (13)

Clearly, a00 = a01 = a11 = 1 is always a solution of Eqs. (12)
and corresponds to the situation where there is no giant
occupied component (S = 0). A giant occupied component
emerges in fact when the stable fixed point a = 1 undergoes
a transcritical bifurcation during which a stable fixed point
appears in [0,1)3. Hence a linear stability analysis of a = 1
leads to the criterion

G′
1(1) = 1 + (1 − ϕc)G′

1(1 − ϕc)

×{1 − ϕcG
′
1(1) − ϕc(1 − ϕc)[G′

1(1)]2} (14)

marking the point ϕ = ϕc where the giant occupied component
starts to emerge. This is the exact same criterion obtained by
Yang et al. [8]. In fact, by identifying u ≡ ϕa00 + (1 − ϕ)a01

and (1 − ϕ)s ≡ ε1a11 + ε2, Eqs. (12) and (13) fall back on their
results, thereby demonstrating the equivalence between the
two approaches. Notice also that we retrieve from Eqs. (12)–
(14) the well-known results for the configuration model [16]
in the limit ϕ → 1 (see the caption of Fig. 2).

FIG. 2. (Color online) Validation of the theoretical formalism
for different depth of percolation (L). Size of the occupied and
nonoccupied components in function of ϕ for graph ensembles
with a different average degree. The degrees of both ensembles are
exponentially distributed according to P (k) = (1 − e−λ)e−λ(k−1) with
k � 1 and λ = − ln(1 − 1/〈k〉). The size of the giant component
in the original graph ensemble, Scm, is shown for comparison. It is
equal to Scm = 1 − G0(a) where a is the solution of a = G1(a) [16].
Curves are the solutions of Eqs. (12), (13), (15), and (16) (L = 1),
and Eqs. (22)–(25) (L = 3). Symbols are the relative size of the
largest occupied and nonoccupied components averaged over at least
100 graphs of at least 5 × 105 nodes each. Threshold values were
obtained from Eqs. (14), (17), and (26), and by analyzing the stability
of Eqs. (23) around a = 1. Note the change of scale of the abscissa
of (c).

The multitype perspective offers a simple interpretation of
the emergence of the giant occupied component. For such
component to exist, the original graph ensemble—defined by
{P (k)}k∈N—must itself have a giant component, which occurs
when G′

1(1) > 1 [16]. A giant occupied component then exists
if an extensive component composed of only type 0 and type 1
nodes prevails after edges between occupied and nonoccupied
nodes have been removed (cyan edges in Fig. 1). In other
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words, a giant occupied component exists if the original giant
component is robust to the removal of these edges. Yet if
the original giant component is robust enough, an extensive
component composed of nonoccupied nodes solely could also
prevail, therefore leading to the coexistence of two extensive
components.

C. Giant nonoccupied component

One equation has been left out of Eqs. (12). Indeed,
Eqs. (11) yields another nontrivial equation

a22 = G1(ε1 + ε2a22)

G1(1 − ϕ)
(15)

for the probability that an edge between two type 2 nodes does
not lead to an extensive component. Since this component is
made of nonoccupied nodes solely, we refer to it as the giant
nonoccupied component. By summing Eq. (10) over type 2
nodes only, the relative size of this other extensive component
is

S̄ = w2

[
1 − G0(ε1 + ε2a22)

G0(1 − ϕ)

]
. (16)

Again, we see that a22 = 1 is always a solution of Eq. (15) and
the point ϕ = ϕ̄c at which it becomes an instable fixed point,
that is, when

(1 − ϕ̄c)G′
1(1 − ϕ̄c) = 1, (17)

marks the (dis)appearance of the giant nonoccupied compo-
nent. Again, notice that Eqs. (15)–(17) fall back on the results
for the configuration model [16] in the limit ϕ → 0 (see the
caption of Fig. 2).

D. Coexistence of extensive components

Figure 2 depicts the typical scenarios with respect to the
coexistence of two extensive components. In Fig. 2(a), the
size of the giant nonoccupied component—initially equal
to the size of the original giant component Scm—decreases
with increasing ϕ until the component stops being extensive
at ϕ = ϕ̄c. Then there is an interval [ϕ̄c,ϕc] where there
is no extensive component: the whole graph is fragmented
into nonextensive observable islands. The giant occupied
component finally emerges at ϕ = ϕc and its size increases
with increasing ϕ until it is equal to the size of the original
giant component. The same behavior is observed in Fig. 2(b)
except that in this case the original giant component is dense
enough for the giant occupied component to emerge before the
giant nonoccupied component disappears. Hence whenever
ϕc < ϕ̄c, there is an interval [ϕc,ϕ̄c] in which two extensive
components coexist.

In the context of observability as considered by Yang et al.,
directly occupied nodes are monitored in such a way that the
state of their first neighbors is known as well (case where
L = 1, see the Appendix for a discussion of the case L =
2) [8]. The existence of a giant occupied component then
means that a macroscopic contiguous fraction of the graph can
be monitored. However, coexistence suggests that monitoring a
macroscopic portion of a graph does not prevent a macroscopic
event to occur on this graph unbeknown to the observer. The
condition for which there is coexistence is rather simple: the

underlying extensive component (the one of the original graph)
must be sufficiently dense to sustain two giant components.
As discussed in Sec. IV, this condition is fulfilled in several
real systems, with coexistence extending over a wide interval
[ϕc,ϕ̄c] in some cases.

III. MATHEMATICAL DESCRIPTION FOR
ARBITRARY DEPTH

The mapping to multitype random graphs can be readily
generalized to an arbitrary depth (L). The procedure to
generate these graphs proceeds initially as for L = 1, but
instead of closing the graph after type 1 nodes have been
selected, the remaining free stubs stemming out of type 1 nodes
are randomly paired with any free stubs in the whole graph.
The nodes thereby reached have either already been tagged as
type 1, or have not been tagged and are henceforth considered
to be of type 2. The remaining free stubs of type 2 nodes are
then randomly paired with any free stubs in the whole graph
to determine type 3 nodes. This iterative assignment of node
types is repeated until type L nodes are selected. The graph is
then finally closed by randomly matching all remaining free
stubs; nodes that have not been assigned a type are said to be
nonoccupied (type L + 1). In the end, there is a total of L + 2
node types.

With this iterative assignment of node types in mind, we
generalize the mathematical description introduced in the
previous section. The probability ε

(L)
i that a random edge leads

to a type i node is

ε
(L)
i =

⎧⎪⎨
⎪⎩

ϕ i = 0

(1 − ϕ)
[
G1

(
χ

(L)
i−1

) − G1
(
χ

(L)
i

)]
1 � i � L

(1 − ϕ)G1
(
χ

(L)
L

)
i = L + 1

, (18)

where we have defined

χ
(L)
i =

{
1 i = 0

1 − ∑i−1
j=0 ε

(L)
j i � 1

. (19)

Similarly, the probability w
(L)
i for a random node to be of type

i is

w
(L)
i =

⎧⎪⎨
⎪⎩

ϕ i = 0

(1−ϕ)
[
G0

(
χ

(L)
i−1

) − G0
(
χ

(L)
i

)]
1 � i � L

(1−ϕ)G0
(
χ

(L)
L

)
i = L + 1

. (20)

The value of ε
(L)
0 and of w

(L)
0 come from the definition of depth-

L percolation itself, that is, that type 0 nodes are assigned
randomly with probability ϕ. Using Eqs. (18), we see that
χ

(L)
i = (1 − ϕ)G1(χ (L)

i−1) meaning that χ
(L)
i is the probability

that the type of the node at the end of a random edge is not
lower than i. Hence for 1 � i � L, the values of ε

(L)
i and of

w
(L)
i equal to the probability that the type of the node is not

lower than i − 1 minus the probability that its type is not lower
than i. The value of ε

(L)
L+1 and of w

(L)
L+1 follow directly. Both

sets of probabilities are normalized.
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We compute the joint degree distribution of each node type
in a similar manner. Based on the procedure described above,
type i nodes are randomly and independently connected: (i)
to no node whose type is lower than i − 1, (ii) to atleast
one type (i − 1) nodes with probability ε

(L)
i−1, (iii) to type i

nodes with probability ε
(L)
i , (iv) to type (i + 1) nodes with the

complementary probability χ
(L)
i+1, and (v) and to no node whose

type is higher than i + 1. Enforcing the normalization of the
resulting joint degree distributions, we obtain the following
associated PGF

g
(L)
i (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G0(ϕx0,0 + [1 − ϕ]x0,1) i = 0

G0(ε(L)
i−1xi,i−1 + ε

(L)
i xi,i + χ

(L)
i+1xi,i+1) − G0(ε(L)

i xi,i + χ
(L)
i+1xi,i+1)

G0(χ (L)
i−1) − G0(χ (L)

i )
1 � i � L

G0(ε(L)
L xL+1,L + ε

(L)
L+1xL+1,L+1)

G0(χ (L)
L )

i = L + 1

. (21)

Following Ref. [14], we set xL,L+1 = xL+1,L = 1 in
Eqs. (21) and the relative size of the giant occupied component,
S(L), is computed from

S(L) =
L∑

i=0

w
(L)
i

[
1 − g

(L)
i (a(L))

]
, (22)

where a(L) ≡ {a(L)
ij }i,j=0,...,L is the fixed point—the smallest

solution in [0,1](L+1)2
—of the system of equations

a
(L)
ij = ∂g

(L)
j (a(L))/∂xji

∂g
(L)
j (1)/∂xji

(23)

with i,j = 0, . . . ,L. The point at which the giant occupied
component emerges, ϕ(L)

c , is obtained by a linear stability
analysis of the fixed point {aij } = 1 with i,j = 0, . . . ,L.
Although the corresponding Jacobian matrix is composed of
recurrent patterns of nonzero elements—due to the hierarchy
of node types—it has not been possible to extract a useful
general equation for ϕ(L)

c . The relative size of the nonoccupied
component, S̄(L), is computed from

S̄(L) = wL+1

[
1 − G0

(
ε

(L)
L + ε

(L)
L+1a

(L)
L+1,L+1

)
G0

(
χ

(L)
L

)
]

, (24)

where a
(L)
L+1,L+1 is the fixed point of

a
(L)
L+1,L+1 = G1

(
ε

(L)
L + ε

(L)
L+1a

(L)
L+1,L+1

)
G1

(
χ

(L)
L

) . (25)

Analyzing the stability of the fixed point aL+1,L+1 = 1, we
find that the related critical point, ϕ̄(L)

c , is the solution of(
1 − ϕ̄(L)

c

)
G′

1

(
χ

(L)
L

) = 1. (26)

Predictions of Eqs. (22)–(26) are validated in Fig. 2(c).
Equations derived in Sec. II are retrieved directly by setting
L = 1 in Eqs. (18)–(26). A very accurate approximation
of Eqs. (24) for the case L = 2 has been given in the
Supplemental Material provided with Ref. [8]. This case is
much more delicate than the case L = 1: a complete Appendix
is devoted to working out the correspondence of the approach
of Ref. [8] with the exact calculation provided in this section.

A. The symmetric case L = 0

The case L = 0 corresponds to traditional site percolation
on random graphs. In the context of observability, it is
somewhat trivial as it is symmetric: the nonoccupied giant
component behaves exactly as the occupied one under the
substitution ϕ → 1 − ϕ. It is however an interesting case as
expressions for ϕ(0)

c and ϕ̄(0)
c can be obtained in closed form

ϕ(0)
c = 1 − ϕ̄(0)

c = 1

G′
1(1)

. (27)

As expected, this corresponds to the threshold value obtained
for site percolation on random graphs [20]. Asking for the
coexistence of the two extensive components (i.e., ϕ(0)

c < ϕ̄(0)
c ),

we find the condition

G′
1(1) > 2.

This offers a quantitative criterion for the original giant
component to be dense enough to sustain coexistence: the
average excess degree of the original graph ensemble must
exceed 2. Recall that in terms of the moments of the
degree distribution, G′

1(1) = (〈k2〉 − 〈k〉)/〈k〉, which permits
to rewrite the criterion as 〈k2〉 > 3〈k〉. As the case L = 0 is
symmetric under the substitution ϕ → 1 − ϕ, it is therefore
not surprising that coexistence occurs whenever ϕ(0)

c < 1/2.

B. Dependency on the depth L

Using the results of Sec. III, we now investigate the effect
of varying L on the coexistence regime. From Eqs. (18) and
(19), it can be shown that for a fixed ϕ

χ
(L)
i = χ

(L′)
i > χ

(L′)
j (28)

for 0 � i � L + 1, i < j � L′ + 1 and L < L′. This implies
that g

(L)
i (x) = g

(L′)
i (x) for 0 � i � L and L < L′. Because

G0(x) is a monotonous increasing function in [0,1] (as well as
its derivatives), we directly see from Eqs. (20) that the fraction
w

(L)
L+1 of nonoccupied nodes decreases with increasing L

w
(L)
L+1

w
(L′)
L′+1

= G0
(
χ

(L)
L

)
G0

(
χ

(L′)
L′

) = G0
(
χ

(L′)
L

)
G0

(
χ

(L′)
L′

) > 1

for L < L′. The more sparse nonoccupied nodes are in the
graphs, the more likely they will form finite-size components,
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FIG. 3. (Color online) Effect of varying the depth L on the coexistence regime. (a)–(e) The size of the nonoccupied giant component
(S̄(L), dash lines) and of the occupied giant component (S(L), solid lines) are shown as a function of ϕ for different values of the depth L

and different degree distributions. The power-law degree distribution is defined as P (k) = k−αe−k/κ/Liα(e1/κ ) with k � 1 and Liα(x) denoting
the polylogarithm. The Poisson degree distribution is defined as P (k) = λke−λ/k! with k � 0 and λ = 〈k〉. See the caption of Fig. 2 for the
definition of the exponential degree distribution. All curves were obtained by solving Eqs. (22)–(25). Figures (a)–(e) are a representative subset
of the behaviors obtained with many realistic and commonly used degree distributions. (f) Behavior of ϕ̄(L)

c (circles) and ϕ(L)
c (squares) as a

function of L using the degree distributions of (a)–(e). Values were obtained from (26), and by analyzing the stability of Eqs. (23) around
a = 1. Lines have been added to guide the eye.

therefore making an extensive component less likely. Hence we
expect ϕ̄(L)

c to decrease with increasing L. In fact, combining
Eqs. (26) and (28) leads to

1 − ϕ̄(L)
c

1 − ϕ̄
(L′)
c

= G′
1

(
χ

(L′)
L′

)
G′

1

(
χ

(L)
L

) = G′
1

(
χ

(L′)
L′

)
G′

1

(
χ

(L′)
L

) < 1,

which implies that ϕ̄(L)
c > ϕ̄(L′)

c for L < L′. The emergence of
the giant occupied component is affected in a similar way. As
L increases, directly and indirectly occupied nodes represent a
larger fraction of the graphs (i.e., 1 − w

(L)
L+1), which increases

the likelihood of an extensive component. We therefore expect
ϕ(L)

c > ϕ(L′)
c for L < L′. These insights are corroborated by

Fig. 3. Hence ϕ(L)
c is bounded from above by its value at

L = 0 [Eq. (27)]. This is in accordance with the conclusion of

Ref. [8] where it is shown that ϕ(1)
c is bounded from above by

a rapidly decreasing function of G′
1(1).

In order to assess the effect of varying the depth L on the
coexistence regime, we need to determine how ϕ(L)

c and ϕ̄(L)
c

behave relative to each other as L increases. Unfortunately,
although the Jacobian matrix determining the stability of the
fixed point {aij } = 1 looks rather simple [cf. Eq. (23)], we
have not been able to completely settle this matter analytically.
However, as illustrated by Fig. 3(f), we find that, in all
investigated scenarios, ϕ(L)

c decreases faster than ϕ̄(L)
c . If this

behavior were to be proven true in general, it would have the
following implications. First, if there is a coexistence interval
for a given depth L, then there is a coexistence interval for all
L′ > L. Consequently, increasing the depth L cannot destroy
the coexistence regime, it can only bring the bounds of its
interval closer to ϕ = 0. As a corollary, if G′

1(1) > 2, then
there exists a coexistence interval for all depth. Note, however,
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FIG. 4. (Color online) (a)–(e) Depth-1 percolation on graphs extracted from real nongeographically constrained complex systems (see
Table I). Symbols represent the average (100 simulations minimum) relative size of the largest occupied (S(1)) and nonoccupied (S̄(1))
components found in these graphs where directly occupied nodes were selected randomly with probability ϕ. Lines were obtained by solving
Eqs. (12), (13), (15), and (16) with the degree distribution extracted from each graph [shown in (f)].

that although ϕ(L)
c decreases faster than ϕ̄(L)

c , the width of the
coexistence interval diminishes with increasing L since both
threshold values are decreasing [cf. Fig. 3(f)].

Second, if no coexistence interval exists for a given depth
L, increasing the depth L eventually creates a coexistence
regime. This behavior is shown in Figs. 3(c)–3(e). Third,
the symmetry of the case L = 0 implies that both thresholds
cannot be greater than 0.5 at the same time for any depth L

[see Fig. 3(f)]. As a final remark on the effect of the depth
L on the coexistence regime, the fact that ϕ(L)

c appears to
be bounded from above by its value at L = 0 implies that
graphs whose degree distribution’s second moment diverges
(i.e., scale-free degree distributions) would always have a
coexistence interval. Indeed, whenever G′

1(1) → ∞, Eq. (27)
yields ϕ(0)

c = 0, and consequently ϕ(L)
c = 0 for any L. As

heavy-tailed degree distribution are ubiquitous in natural
and technological complex systems [29,32–36], our analy-
sis suggests that coexistence will be found in many real
complex systems as ϕ(L)

c will be very close to zero for any
depth L.

IV. OBSERVABILITY OF REAL COMPLEX SYSTEMS

To further our investigation, we simulated depth-1 percola-
tion on graphs representing the underlying web of interactions
of real complex systems. A total of 15 systems of diverse
nature were considered, details of which are given in Table I.
Only a representative subset of our results on those systems
are displayed in Figs. 4 and 5. Given a random sampling of
a fraction ϕ of the elements of a system (e.g., individuals,
autonomous systems, proteins), the mathematical approach
introduced in the previous sections allows one to estimate the
coverage of the system that is achieved given that information
about the neighbors up to a distance L of the sampled elements
can be gathered as well. This coverage can be estimated in
terms of the total number of elements about which information
has been obtained (i.e., {w(L)

i }i=0,...,L+1), or in terms of the
largest number of contiguous elements (i.e., S(L)), as in the
main focus of this work.

Two examples will serve to explain the practical utility of
our approach. Suppose that we want to get a global picture
of the scientists working in a specific field without any prior
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FIG. 5. (Color online) (a) and (b) Depth-1 percolation on graphs extracted from real geographically constrained complex systems (see
Table I). Symbols represent the average (100 simulations minimum) relative size of the largest occupied (S(1)) and nonoccupied (S̄(1))
components found in these graphs where directly occupied nodes have been selected randomly with probability ϕ. Lines were obtained by
solving Eqs. (12), (13), (15), and (16) with the degree distribution extracted from each graph [shown in (c)]. (d) Depth-1 percolation on square
L × L lattices (circles: L = 70, squares: L = 1000) where edges are randomly removed with probability p = 0.30 (〈k〉 = 2.8). Symbols
represent the average (100 simulations minimum) relative size of the largest occupied (S(1)) and nonoccupied (S̄(1)) components. Lines (with no

symbols) are the predictions of Eqs. (12), (13), (15), and (16) with the binomial degree distribution P (k) = ( 4
k )(1 − p)kp4−k with 0 � k � 4.

Lines have been added between symbols in (c) and (d) to guide the eye.

information about that field. One way to achieve this is to
browse the latest table of contents of appropriate journals,
to identify scientists that have published something relevant
to that field and then find with whom they coauthored papers
during their careers. Although a sampling through the table
of contents is not rigorously equivalent to the random and
uncorrelated sampling considered in the previous sections, the
quality of the coverage obtained can be estimated by studying
depth-1 percolation on the associated coauthorship network.
Looking up the coauthors of these coauthors up to a distance
L then corresponds to depth-L percolation. Similarly, it has
recently been revealed that intelligence agencies may gather
information on individuals that are up to three hops (i.e., L =
3) from suspected individuals [37]. Again, our model offers a
theoretical framework to estimate the extent of the population
that could be investigated by studying the depth-L percolation
of online social networks, email communications, or mobile
phone networks.

Figures 4 and 5 summarize the typical behaviors obtained
when simulating depth-1 percolation on the graphs described
in Table I. Our results suggest that real systems behave
differently with regard to observability according to whether
they are geographically constrained or not. Graphs that are
not geographically constrained behave more or less like
random graphs (long-range connections are allowed), while
geographically constrained graphs behave more like lattices
(no long-range connections).

We find that the observability of nongeographically con-
strained graphs [Figs. 4(a)–4(e)] is surprisingly well predicted
by our mathematical framework despite the fact that most of
these graphs have a far less trivial structure (e.g., clustering,
correlations) than the configuration model, which considers
graphs that are random in all aspects other than the degree
distribution. More importantly, we determine that these graphs
have a structure that permits a coexistence regime. These
graphs also display a vanishing threshold, ϕ(1)

c , for the
observable giant component. This agrees with the prediction of
our model since these graphs have very skewed (i.e., scale-free)
degree distribution [see Fig. 4(f)].

Contrariwise, our results for geographically constrained
graphs [Figs. 5(a) and 5(b)] display totally different behaviors
[38]. Apart from the nonzero threshold for the occupied giant
component, ϕ(1)

c , caused by their approximatively exponential
degree distributions [see Fig. 5(c)], the behavior of the two
extensive components is poorly predicted by our mathematical
framework. A fairly large coexistence interval is predicted
while numerical simulations show that their structure does
not allow, or barely allows, for a coexistence regime. Ge-
ographically constrained graphs seem to be more accurately
modeled by lattices than by random graphs. We have simulated
depth-1 percolation on L × L square lattices where a fraction
p of edges are randomly removed. As shown in Fig. 5(d), by
simply choosing p to match their average degree and L to
match their size, we have been able to qualitatively reproduce
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TABLE I. Description and properties of the databases used in Sec. IV and in Figs. 4 and 5. The number of nodes (N ), the average degree
(〈k〉), the highest degree (kmax), the size of largest connected component (Smax) as well as the value of G′

1(1) are given. The databases are divided
into two categories: those whose behavior, with regard to observability, is closer to that of a random graph (top), and those whose behavior is
similar to that of a lattice (bottom).

Description N 〈k〉 kmax G′
1(1) Smax Fig. Ref.

Email communication network of Universitat Rovira i Virgili 1 133 9.08 1 080 125 1 133 4(b) [21]
Protein interaction network of S. cerevisiae 2 640 4.83 111 11.5 2 445 4(d) [22]
Web of trust of the Pretty Good Privacy (PGP) encryption algorithm 10 680 4.55 205 17.9 10 680 – [23]
Internet at the level of autonomous systems 22 963 4.22 2 390 260 22 963 4(c) [24]
arXiv coauthorship network 30 561 8.24 191 20.9 28 502 4(a) [22]
Gnutella peer-to-peer network 36 682 4.82 55 10.5 36 646 – [25]
Slashdot online social network 77 360 12.1 2 539 146 77 360 4(e) [26]
Myspace online social network 100 000 16.8 59 108 3770 100 000 – [27]
Email exchange network from an undisclosed European research institution 265 009 2.75 7 636 536 224 832 – [28]
World Wide Web 325 729 6.69 10 721 280 325 729 – [29]
Polish power grid 3 374 2.41 11 2.15 3 374 5(b) [30]
Western States Power Grid of the United States 4 941 2.67 19 2.87 4 941 – [31]
Road network of Pennsylvania 1 088 092 2.83 9 2.20 1 087 562 5(a) [26]
Road network of Texas 1 379 917 2.79 12 2.15 1 351 137 – [26]
Road network of California 1 965 206 2.82 12 2.17 1 957 027 – [26]

the results obtained with the real graphs [i.e., Figs. 5(a) and
5(b)]. Although preliminary, these results point towards the
topological properties that should be incorporated in a future
theoretical formalism to accurately model geographically
constrained graphs.

V. CONCLUDING REMARKS

We have presented a general theoretical framework to study
the observability of random graphs. On the one hand, it has
allowed us to demonstrate that two extensive components,
an observable and nonobservable, may coexist for a wide
range of realistic parameters, and that coexistence can be
observed in many real complex systems. Our results suggest
that coexistence could be an impediment to the monitoring of
large real systems, and should therefore be considered in future
investigations. On the other hand, the mapping of depth-L
percolation unto multitype graphs opens the way to the use of
recent developments in percolation theory to study graphs with
more realistic structures (e.g., clustering, correlations), and
to investigate the efficiency of various distribution schemes
for the monitoring units (e.g., according to the degree, to
the local clustering or to the centrality of nodes) [18,39–43].
We have also shown that our approach performs poorly at
predicting the observability of geographically constrained
systems, and that achieving large-scale observability of these
systems requires more monitoring units than suggested by
calculations based on the configuration model. We have
provided numerical evidences that these systems in fact behave
more like lattices than random graphs. This observation raises
many questions whose answers are expected to improve our
understanding of the organization of these complex systems,
and consequently to improve our capability to predict their
behavior.

Note added in proof. We have recently been made aware
that a similar concept has been investigated in Ref. [44].
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APPENDIX: COMPARISON WITH THE APPROACH OF
YANG ET AL. FOR L = 2

In this section we analyze the solution to the observability
problem given by Yang et al. in the case L = 2 and compare
it with the prediction of our formalism.

1. Multitype formalism

Let us first make explicit the predictions of our approach.
To lighten the presentation, we omit the superscript specifying
the depth since this entire section focuses on the case L = 2.
Setting L = 2 in Eq. (18), we obtain

ε0 = ϕ (A1a)

ε1 = (1 − ϕ)[1 − G1(1 − ϕ)] (A1b)

ε2 = (1 − ϕ){G1(1 − ϕ) − G1[(1 − ϕ)G1(1 − ϕ)]}, (A1c)

where we have omitted the case i = 3 since the present section
focuses on the giant observable component solely. Similarly,
Eq. (19) becomes

χ0 = 1 (A2a)

χ1 = 1 − ϕ (A2b)

χ2 = (1 − ϕ)G1(1 − ϕ) (A2c)

χ3 = (1 − ϕ)G1[(1 − ϕ)G1(1 − ϕ)], (A2d)

and Eq. (20) yields

w0 = ϕ (A3a)

w1 = (1 − ϕ)[1 − G0(1 − ϕ)] (A3b)

w2 = (1 − ϕ){G0(1 − ϕ) − G0[(1 − ϕ)G1(1 − ϕ)]}. (A3c)
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Combining Eqs. (A1) and (A2) with Eqs. (21) and (23), we
obtain the following system of equations

a00 = G1(ϕa00 + (1 − ϕ)a01) (A4a)

a01 = G1(ϕa00 + ε1a11 + χ2a12) (A4b)

a11 = G1(ϕa00 + ε1a11 + χ2a12) − G1(ε1a11 + χ2a12)

1 − G1(1 − ϕ)

(A4c)

a12 = G1(ε1a11 + ε2a22 + χ3)

G1(1 − ϕ)
(A4d)

a22 = G1(ε1a11 + ε2a22 + χ3) − G1(ε2a22 + χ3)

G1(1 − ϕ) − G1[(1 − ϕ)G1(1 − ϕ)]
, (A4e)

whose fixed point determines the size and behavior of the
giant observable component. As for the case L = 1, some aij

are equal: a10 = a00 and a21 = a11 when L = 2. In fact, since
the directly observable nodes (type 0) are randomly distributed
and the type of the other nodes is inherited by the type of their
neighbors, we find in general that ai+1,i = ai,i . In other words,
the excess degree distribution of node A is independent of the
type of the node from which it has been reached, as long as it
is not the type of this neighbor that defines the type of node A.
Note however that we will use interchangeably ai+1,i and ai,i

according to whether it simplifies the notation or clarifies the
significance of mathematical quantities. Combining Eqs. (A3)
with Eqs. (21) and (22), the size of the giant observable
component is given by

S = 1 − ϕG0(ϕa00 + (1 − ϕ)a01)

− (1 − ϕ){G0(ϕa00 + ε1a11 + χ2a12)

−G0(ε1a11 + χ2a12) + G0[(1 − ϕ)G1(1 − ϕ)]

+G0(ε1a11 + ε2a22 + χ3) − G0(ε2a22 + χ3)}. (A5)

2. Yang et al.’s approach

Let us now recall the equations for L = 2 as given in the
Supplemental Material of Ref. [8]. The authors define three
probabilities u, v, and s which are analogous to the {aij } used
in our approach: they correspond to the probability that a given
randomly chosen edge does not lead to the giant observable
component. These probabilities are defined as follows. (i) u is
the probability that an edge stemming from a node of type 0
(i.e., directly observable) does not lead to the giant observable
component. (ii) v is the probability that an edge stemming
from a node of type 1 towards a node of type 1 or of type 2
does not lead to the giant observable component. (iii) s is the
probability that an edge stemming from a node of type 2 does
not lead to the giant observable component. The authors then
explain that by following a similar argument to the one used
for L = 1, it can be shown that

u = ϕG1(u) + (1 − ϕ)G1(ψ1) (A6a)

v = G1[(1 − ϕ)s] + ψ2 (A6b)

s = G1[(1 − ϕ)G1(1 − ϕ)] + ψ2

+G1(ψ3) − G1[(1 − ϕ)G1(1 − ϕ)s], (A6c)

where

ψ1 = ϕG1(u) + (1 − ϕ)v (A6d)

ψ2 = G1(ψ1) − G1[(1 − ϕ)v] (A6e)

ψ3 = (1 − ϕ)ψ2 + (1 − ϕ)G1(1 − ϕ)s, (A6f)

and that the size of the giant observable component is given
by

SY = 1 − ϕG0(u) − (1 − ϕ){G0(ψ1) − G0[(1 − ϕ)v)]

+G0(ψ3) − G0[(1 − ϕ)G1(1 − ϕ)s]}
+G0[(1 − ϕ)G1(1 − ϕ)]. (A7)

3. Comparison of the two approaches

We now investigate whether these two approaches are
equivalent or not. As mentioned above, u is the probability that
a directly observable node (type 0) is not linked to the giant
observable component via one specific edge. This corresponds
to the probability that the node at the other end of the edge, say
node B, is of type 0 (probability ε0) and that the edge does not
lead to the giant observable component (probability a00), or
that node B is of type 1 (probability χ1) and that the edge does
not lead to the giant observable component (probability a01).
Summing these two contributions and then using Eqs. (A4),
we find

u = ε0a00 + χ1a01

= ϕG1(ϕa00 + (1 − ϕ)a01︸ ︷︷ ︸
u

)

+ (1 − ϕ)G1(ϕa10 + ε1a11 + χ2a12︸ ︷︷ ︸
ψ1

), (A8)

which corresponds to Eq. (A6a) provided that the identification
of ψ1 holds. As in the case L = 1, ψ1 is the probability that
a node of type 1 is not connected to the giant observable
component via a specific edge. Three different scenarios must
be accounted for depending on the type of the node at the other
end of the edge: this node can be of type 0, type 1, or type
2, with probability ε0, ε1, and χ2, respectively. Multiplying
each probability by the corresponding probability that the edge
does not lead to the giant component, we retrieve the above
identification

ψ1 = ε0a10 + ε1a11 + χ2a12

= ϕG1(ϕa00 + (1 − ϕ)a01)︸ ︷︷ ︸
ϕG1(u)

+ ε1a11 + χ2a12︸ ︷︷ ︸
(1−ϕ)v

, (A9)

which corresponds to Eq. (A6d) provided that the identification
of v holds. The first term on the right-hand side of this last
equation corresponds to the situation where the node at the
other end of the edge is of type 0 (probability ϕ) and does not
lead to the giant observable component [probability G1(u)].
The second term corresponds to the case where the neighboring
node is of type 1 or of type 2, which occurs with probability
1 − ϕ (recall that the neighbor of a node of type 1 cannot be
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of type 3, by definition), and that this edge does not lead to the
giant component, which by definition occurs with probability
v. In terms of the formalism that we propose, the probability
for an edge leaving a node of type 1 to lead to a node of type

1 is ε1, and is χ2 if the neighboring node is of type 2 instead.
Weighting these probabilities with the appropriate probability
that the edge does not lead to the giant observable component
yields precisely

(1 − ϕ)v = ε1a11 + χ2a12

= (1 − ϕ){G1(ϕa10 + ε1a11 + χ2a12)︸ ︷︷ ︸
G1(ψ1)

−G1(ε1a11 + χ2a12︸ ︷︷ ︸
(1−ϕ)v

)

︸ ︷︷ ︸
ψ2

+G1(ε1a21 + ε2a22 + χ3︸ ︷︷ ︸
(1−ϕ)s

)}, (A10)

from which we retrieve Eqs. (A6e) and (A6b) provided that the
identification of s holds. We see from this last equation that ψ2

is the probability that a node of type 1 reached from a node of
type 1 does not lead to the giant observable component. Note
that because it has been reached from a node of type 1, this
node must have at least one neighbor of type 0 in order to be
of type 1. Since G1(ψ1) includes the case where all neighbors
of a node of type 1 are not of type 0, the probability of such
an event must be removed from the count, which is achieved
by subtracting G1[(1 − ϕ)v]. Additionally if the node at the
other end of the edge is of type 2 instead of type 1, then
none of its other neighbors must be of type 0, which occurs
individually with probability 1 − ϕ, and must not lead to the
giant component, which by definition occurs with probability
s. Averaging over the number of other neighbors [the excess
degree distribution generated by G1(x)], we obtain the third
term on the right-hand side of Eq. (A10). Again, the probability
(1 − ϕ)s can be expressed in terms of our formalism. The
probability that an edge leaving a node of type 2 towards a
node of type 1, of type 2, and of type 3 is respectively ε1,
ε2, and χ3. Weighting ε1 and ε2 by the probability that the
edge does not lead to the giant component (recall that a node
of type 3 does not belong to the giant observable component
“with probability 1”) yields our previous identification

(1 − ϕ)s = ε1a21 + ε2a22 + χ3

= (1 − ϕ){ψ2 + [G1((1 − ϕ)ψ2 + ε2a22 + χ3︸ ︷︷ ︸
ψ3

)

−G1(ε2a22 + χ3)] + G1((1 − ϕ)G1(1 − ϕ))},
(A11)

where we have used the fact that ε1a21 = ε1a11 = (1 − ϕ)ψ2

and the definition of χ3. Comparing this last equation with
Eqs. (A6c) and (A6f), we find that the two approaches are
equivalent if

(1 − ϕ)G1(1 − ϕ)s = ε2a22 + χ3. (A12)

As for ψ2, we see from Eq. (A11) that ψ3 is the probability that
an edge between two nodes of type 2 does not lead to the giant
observable component. Since the node of type 2 reached from
such edge does not inherit its type from the node of type 2 at the
other end of the edge, at least one of its other neighbors must
be of type 1. Again, since G1(ψ3) includes the configuration
where every other neighbors of the node of type 2 are of type 2
or of type 3, this eventuality must be removed from the count,
which is achieved by subtracting G1(ε2a22 + χ3).

Let us now investigate the validity of Eq. (A12). Re-
placing (1 − ϕ)s by ε1a21 + ε2a22 + χ3 yields the following
alternative criterion for the complete equivalence of the two
approaches

ε2a22 + χ3 = (ε1a21 + ε2a22 + χ3)G1(1 − ϕ), (A13)

which is most certainly not true in general. Although very sim-
ilar, these two approaches are therefore not strictly equivalent.
In fact, their numerical predictions differ by less than a fraction
of one percent in all investigated cases. This difference stems
for the use of s for two different purposes in the approach
presented in Ref. [8]. On the one hand, s is initially defined as
the probability that an edge stemming out of a node of type 2
does not lead to the giant observable component irrespective
of the type of the node at its other end (i.e., type 1, type 2,
or type 3). On the other hand, as it is used in Eqs. (A6c)
and (A6f), the possibility that the type of the node at the
other end is of type 1 is excluded since it is taken care of by
the probability (1 − ϕ)ψ2. More precisely, in our formalism
(1 − ϕ)G1(1 − ϕ) = ε2 + χ3 is the probability that the node
at the other end of an edge and its other neighbors are not of
type 0. Since this edge is leaving a node of type 2, the node at
its other end is of type 2 or of type 3; it therefore cannot be
of type 1. In other words, the term (1 − ϕ)G1(1 − ϕ)s uses s

as an approximation of the probability that an edge leaving a
node of type 2 towards a node of type 2 or type 3 does not lead
to the giant observable component.
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