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We introduce a mechanism which models the emergence of the universal properties of complex

networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free

organization beyond the link. This brings a new perspective on network organization where communities,

instead of links, are the fundamental building blocks of complex systems. We show how our simple model

can reproduce social and information networks by predicting their community structure and more

importantly, how their nodes or communities are interconnected, often in a self-similar manner.
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A universal matter.—Reducing complex systems to their
simplest possible form while retaining their important
properties helps model their behavior independently of
their nature. Results obtained via these abstract models
can then be transferred to other systems sharing a similar
simplest form. Such groups of analog systems are called
universality classes and are the reason why some models
apply just as well to the sizes of earthquakes or solar flares
than to the sales number of books or music recordings [1].
That is, their statistical distributions can be reproduced by
the same mechanism: preferential attachment. This mecha-
nism has been of special interest to network science [2]
because it models the emergence of power-law distribu-
tions for the number of links per node. This particular
feature is one of the universal properties of network struc-
ture [3], alongside modularity [4] and self-similarity [5].
Previous studies have focused on those properties one at a
time [3–8], yet a unified point of view is still wanting. In
this Letter, we present an overarching model of preferential
attachment that unifies the universal properties of network
organization under a single principle.

Preferential attachment is one of the most ubiquitous
mechanisms describing how elements are distributed
within complex systems. More precisely, it predicts the
emergence of scale-free (power-law) distributions where
the probability Pk of occurrence of an event of order k
decreases as an inverse power of k (i.e., Pk / k�� with
� > 0). It was initially introduced outside the realm of
network science by Yule [9] as a mathematical model of
evolution explaining the power-law distribution of biologi-
cal genera by number of species. Independently, Gibrat
[10] formulated a similar idea as a law governing the
growth rate of incomes. Gibrat’s law is the sole assumption
behind preferential attachment: the growth rates of entities
in a system are proportional to their size. Yet, preferential
attachment is perhaps better described using Simon’s gen-
eral balls-in-bins process [11].

Simon’s model was developed for the distribution of
words by their frequency of occurrence in a prose sample
[12]. The problem is the following: what is the probability

Pkþ1ðiþ 1Þ that the ðiþ 1Þth word of a text is the ðkþ 1Þth
occurrence of one of the NkðiÞ words which already
appeared k times? By simply stating that Pkþ1ðiþ 1Þ /
k � NkðiÞ, Simon obtained the desired distribution [Fig. 1(a)
]. In this model, the nature of the system is hidden behind a
simple logic: the ‘‘popularity’’ of an event is encoded in its
number of past occurrences. More clearly, a word used
twice is 2 times more likely to reappear next than a word
used once. However, before its initial occurrence, a word
has appeared exactly zero times, yet it has a certain proba-
bility p of appearing for the very first time. Simon’s model
thus produces systems whose distribution of elements falls
as a power law of exponent � ¼ ð2� pÞ=ð1� pÞ.
On the matter of networks.—Networks are ensembles of

potentially linked elements called nodes. In the late 1990s,
it was found that the distribution of links per node (the
degree distribution) featured a power-law tail for networks
of diverse nature. To model these so-called scale-free net-
works, Barabási and Albert [3] introduced preferential
attachment in network science. In their model, nodes are
added to the network and linked to a certain number of
existing nodes. The probability that the new node chooses
an old one of degree k is proportional to kNk, where Nk is
the number of nodes of degree k. As the system goes to
infinity, Nk falls off as k

�3.
From the perspective of complex networks, Simon’s

model may be regarded not as a scheme of throwing balls
(e.g., word occurrences) in bins (e.g., unique words), but as
an extreme case of scale-free networks where all links are
shared within clearly divided structures. Obviously, both
Simon’s and the Barabási-Albert’s (BA) models follow the
preferential attachment principle. However, Simon’s
model creates distinct growing structures, whereas the
BA model creates overlapping links of fixed size. By using
the same principle, one creates order while the other
creates randomness [Fig. 1(b)]. Our approach explores
the systems that lie in between.
When structure matters.—The vast majority of natural

networks have a modular topology where links are shared
within dense subunits [4]. These structures, or communities,
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can be identified as social groups, industrial sectors, protein
complexes or even semantic fields [13]. They typically
overlap with each other by sharing nodes and their number
of neighboring structures is called their community degree.
This particular topology is often referred to as community
structure [Fig. 1(b)]. Because these structures are so impor-
tant on a global level, they must influence local growth.
Consequently, they are at the core of our model.

The use of preferential attachment at a higher structural
level is motivated by three observations. First, the number
of communities an element belongs to, its membership
number, is often a better indicator of its activity level
than its total degree. For instance, we judge an actor taking
part in many small dramas more active than one of a
thousand extras in a single epic movie, just as we may
consider a protein part of many complexes more functional
than one found in a single big complex.

Second, studies have hinted that Gibrat’s law holds true
for communities within social networks [14]. The power-
law distribution of community sizes recently observed in
many systems (e.g., protein interaction, word association
and social networks [13] or metabolite and mobile phone
networks [15]) supports this hypothesis.

Third, degree distributions can deviate significantly from
true power laws, while higher structural levels might be
better suited for preferential attachment models [Fig. 1(c)].

A simple model.—Simon’s model assigns elements to
structures chosen proportionally to their sizes, while the
BA model creates links between elements chosen propor-
tionally to their degree. We thus define structural prefer-
ential attachment (SPA), where both elements and
structures are chosen according to preferential attachment.
Here, links will not be considered as a property of two
given nodes, but as part of structures that can grow on the
underlying space of nodes and eventually overlap.

Our model can be described as the following stochastic
process. At every time step, a node joins a structure. The

node is a new one with probability q, or an old one chosen
proportionally to its membership number with probability
1� q. Moreover, the structure is a new one of size s with
probability p, or an old one chosen among existing struc-
tures proportionally to their size with probability 1� p.
These two growth parameters are directly linked to two
measurable properties: modularity (p) and connectedness
(q) [Fig. 2]. Note that, at this point, no assumption is made
on how nodes are linked within structures; our model
focuses on the modular organization.
Whenever the structure is a new one, the remaining

s� 1 elements involved in its creation are once again
preferentially chosen among existing nodes. The basic
structure size s is called the system base and refers to the
smallest structural unit of the system. It is not a parameter
of the model per se, but depends on the considered system.
For instance, the BAmodel directly creates links, i.e. s ¼ 2
(with p ¼ q ¼ 1), unlike Simon’s model which uses s ¼ 1
(with q ¼ 0). All the results presented here use a node-
based representation (s ¼ 1), although they can be repro-
duced equally well via a link-based representation (s ¼ 2).
In fact, for sufficiently large systems, the distinction be-
tween the two versions seems mainly conceptual (see
Supplemental Material for details [16]).
In our process, the growth of structures is not necessarily

dependent on the growth of the network (i.e., the creation
of nodes). Consequently, we can reproduce statistical prop-
erties of real networks without having to consider the
large-size limit of the process. This allows our model to
naturally include finite size effects (e.g., a distribution
cutoff) and increases freedom in the scaling properties.
In fact, we can follow Sn and Nm, respectively, the number
of structures of size n and of nodes with m memberships,
by writing master equations for their time evolution [17]:

_S nðtÞ ¼ ð1� pÞ ðn� 1ÞSn�1ðtÞ � nSnðtÞ
½1þ pðs� 1Þ�t þ p�n;s; (1)

FIG. 1 (color online). (a) The distribution of words by their number of appearances in James Joyce’s Ulysses (empirical data). The
numerical data was obtained from a single realization of Simon’s model with p equal to the ratio of unique words (30 030) on the total
word count (267 350). (b) Schematization of the systems considered in this Letter, illustrating how order (Simon’s model of balls in
bins) and randomness (Barabási-Albert’s model of random networks) coexist in a spectrum of complex systems. (c) The distribution of
coactors and movies per actor in the Internet Movie Database since 2000. The organization moves closer to a true power law when
looking at a higher structural level (i.e., movies versus coactors).
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_NmðtÞ ¼ ½1þ pðs� 1Þ � q�

� ðm� 1ÞNm�1ðtÞ �mNmðtÞ
½1þ pðs� 1Þ�t þ q�m;1: (2)

Equations (1) and (2) can be transformed into ordinary
differential equations for the evolution of the distribution
of nodes per structure and structure per node by normaliz-
ing Sn and Nm by the total number of structures and nodes,
pt and qt, respectively. One then obtains recursively the
following solutions for the normalized distributions at
statistical equilibrium, fS�

ng and fN �
mg:

S �
n ¼

Q
n�1
k¼s k�sQ

n
k¼sð1þ k�sÞ ; �s ¼ 1� p

1þ pðs� 1Þ (3)

N �
m ¼

Q
m�1
k¼1 k�sQ

m
k¼1ð1þ k�sÞ ; �s ¼ 1þpðs� 1Þ � q

1þpðs� 1Þ ; (4)

which scale as indicated in Table I, N �
m / m��N and

S�
n / n��S .
Results and discussions.—There are three distributions

of interest which can be directly obtained from SPA: the
membership, the community size, and the community
degree distributions. In systems such as the size of business
firms or word frequencies, these distributions suffice to
characterize the organization. To obtain them, the SPA
parameters, q and p, are fitted to the empirical scaling
exponents of the membership and community size distri-
butions. In complex networks, one may also be interested
in the degree distribution. Additional assumptions are then
needed to determine how nodes are interconnected within
communities (specified when required).
The first set of results considered is the community

structure of the coautorship network of an electronic pre-
prints archive, the cond-mat arXiv circa 2005 [Fig. 3(a)],
whose topology was already characterized using a clique
percolation method [13]. Here, the communities are de-
tected using the link community algorithm of Ahn et al.
[15], confirming previous results.
Using only two parameters, our model can create a

system of similar size with an equivalent topology accord-
ing to the four distributions considered (community sizes,
memberships, community degree and node degree). Not
only does SPA reproduce the correct density of structures
of size 2, 3, 4 or more, but it also correctly predicts how
these structures are interconnected via their overlap, i.e.,
the community degree. This is achieved without imposing
any constraints whatsoever for this property. The first
portion of the community degree distribution is approxi-
mately exponential; a behavior which can be observed in
other systems, such as the Internet [Fig. 3(b)] and both a
protein interaction and a word-association network [13].
To our knowledge, SPA is the first growth process to
reproduce such community structured systems.
Moreover, assuming fully connected structures, SPA

correctly produces a similar behavior in the degree
distribution of the nodes. Obtaining this distribution
alone previously required two parameters and additional

FIG. 2 (color online). (top) Representation of the possible
events in a step of node-based SPA; the probability of each
event is indicated beneath it. (bottom) A schematization of the
spectrum of systems obtainable with SPA. Here, we illustrate the
conceptual differences between node-based s ¼ 1 and link-
based systems s ¼ 2: Simon’s model (q ¼ 1) creates structures
of size one (nodes), while the BA model (p ¼ q ¼ 1) creates
random networks through structures of size two (links).

TABLE I. Exponents of the power-law distributions of struc-
tures per element (membership) and of elements per structure
(size) at statistical equilibrium. One easily verifies that the
membership scaling of link-based systems with p ¼ q ¼ 1
corresponds to that of the BA model (�N ¼ 3), and that node-
based systems with q ¼ 1 reproduce Simon’s model. See
Supplemental Material for the derivation [16].

System base s Membership scaling �N Size scaling �S

Node (s ¼ 1) ð2� qÞ=ð1� qÞ ð2� pÞ=ð1� pÞ
Link (s ¼ 2) ½2ðpþ 1Þ � q�=ð1þ q� pÞ 2=ð1� pÞ
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assumptions [7]. In contrast, SPA shows that this is a
signature of a scale-free community structure. This is an
interesting result in itself, since most observed degree
distributions follow a power law only asymptotically.
Furthermore, this particular result also illustrates how
self-similarity between different structural levels (i.e.,
node degree and community degree distributions) can
emerge from the scale-free organization of communities.

Finally, the Internet Movie Database coacting network is
used to illustrate how, for bigger and sparser communities
which cannot be considered fully connected, one can
still easily approximate the degree distribution. We first
observe that the mean density of links in communities
of size n approximately behaves as logðnÞ=n (see
Supplemental Material [16]). Then, using a simple bino-
mial approximation to connect the nodes within commun-
ities, it is possible to approximate the correct scaling
behavior for the degree distribution [Fig. 3(c)]. This
method takes advantage of the fact that communities are,
by definition, homogeneous such that their internal orga-
nization can be considered random.

Conclusion and perspective.—In this Letter, we have
developed a complex network organization model where
connections are built through growing communities,
whereas past efforts typically tried to arrange random links
in a scale-free, modular and/or self-similar manner. Our
model shows that these universal properties are a conse-
quence of preferential attachment at the level of commun-
ities: the scale-free organization is inherited by the lower
structural levels.

Looking at network organization beyond the link is also
useful to account for missing links [18] or to help realistic
modeling [19,20]. For instance, this new paradigm of scale-
free community structure suggests that nodes with the most
memberships, i.e., structural hubs, are key elements in
propagating epidemics on social networks or viruses on

the Internet. These structural hubs connect many different
neighborhoods, unlike standard hubs whose links can be
redundant if shared within a single community.
There is no denying that communities can interact in

more complex ways through time [21]. Yet, from a statis-
tical point of view, those processes can be neglected in the
context of a structurally preferential growth. Similarly,
even though other theories generating scale-free designs
exist [22], they could also benefit from generalizing their
point of view to higher levels of organization.
The authors wish to thank Yong-Yeol Ahn et al. for their

link community algorithm; Gergely Palla et al. for provid-
ing the CFinder software and the arXiv data set; Mark
Newman for the Internet data set; and The Internet
Movie Database available at www.imdb.com. This re-
search was funded by CIHR, NSERC and FQRNT.
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Human beings, viewed as behaving systems, are quite simple. The apparent complexity of
our behavior over time is largely a reflection of the complexity of the environment in which
we find ourselves.

— Herbert A. Simon (1916 - 2001)
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1 On scale-free distributions and preferential attachment

A distribution is said to follow a power law when the probability of obtaining a particular value decreases
as an inverse power of that value (i.e. Pk ∝ k−γ). The systems featuring this property are typically growing,
which means that the measured value obtained on a given element will most likely be higher at a later time if
given the chance. Examples include the distributions of city or business firm sizes, of written text by length,
of computer file sizes, of species by biological genera, of number of telephone messages or airway passen-
gers between pairs of cities and the sales of almost any branded product, even intervals between repetition
of notes in Mozart’s Bassoon Concerto in B[ Major, all follow power-law distributions1, 2. However, it is
harder to find a common feature for other systems that also exhibit power-law distributions such as the sizes
of earthquakes, moon craters or solar flares2.

Because this behaviour is typically observed in growing systems, mechanism used to explain the origin
of power laws are often based on stochastic growth processes. Of course, other models exist2, such as the
Highly Optimized Tolerance systems of Carlson and Doyle3, 4. We will focus on one of the most well-known
growth processes: preferential attachment (also known as the Yule process5, Gibrat’s law6, rich-get-richer
mechanism and cumulative advantage7 amongst many names). In essence, preferential attachment is a
simple urn scheme where balls are thrown in bins at a rate proportional to the number of balls already in a
given bin. The balls can represent money being invested, people taking residence or a new scientific article
being published; while bins can respectively represent business firms, cities, scientists and so on. In all
cases, the probability Pk that a ball ends up in a bin which already contains k balls is proportional to k (i.e.
Pk = a + bk), such that the relative growth rate of a structure is (if a = 0), or converges toward (if a , 0),
a constant. In our Letter, we generalize preferential attachment by using Simon’s model8 which uses a null
ground state (a = 0), but introduces the probability p that the bin used in an attachment event (when a ball
is thrown) is a new one as yet empty. The absolute number S k(t) of bins containing k balls after t time steps
can be followed by writing:

S k(t + dt) = S k(t) + dt
[
(1 − p)

(k − 1)S k−1(t) − kS k(t)
t

+ pδk,1

]
. (1.1)

Transforming (1.1) into an equation for the proportion Sk(t) of bins which contain k balls after t time steps
can be done by noting that {S k(t)} is simply {Sk(t)} multiplied by the total number of bins at time t: pt. We
can now write

p(t + dt)Sk(t + dt) = ptSk(t) + dt
{

p (1 − p) [(k − 1)Sk−1(t) − kSk(t)] + pδk,1

}
(1.2)

from which we can obtain a simple ODE of the form:

lim
dt→0

(t + dt)Sk(t + dt) − tSk(t)
dt

=
d
dt

[tSk(t)] = (1 − p) [(k − 1)Sk−1(t) − kSk(t)] + δk,1 . (1.3)

The {S∗k} ensemble at equilibrium (where d
dtSk(t) = 0) can be found by the following method:

d
dt

[tSk(t)] = Sk(t) + t
d
dt
Sk(t) = (1 − p) [(k − 1)Sk−1(t) − kSk(t)] + δk,1 (1.4)

S∗k = (1 − p)
[
(k − 1)S∗k−1 − kS∗k

]
+ δk,1 =

(1 − p) (k − 1)S∗k−1 + δk,1

(1 + k (1 − p))
(1.5)

2
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Figure 1: The distribution of words by their number of appearances in James Joyce’s Ulysses (empirical data). The
numerical data was obtained from a single iteration of Simon’s model with an empirical measure of p equal to the
ratio of unique words (30 030) on the total word count (267 350). The analytical curve is obtained from Eq. (1.1).

or

S∗k =

∏k−1
m=1 m (1 − p)∏k

m=1
[
1 + m (1 − p)

] ∀ k > 0 (1.6)

so that
S∗k

S∗k−1
=

(k − 1) (1 − p)
1 + k (1 − p)

(1.7)

which can be shown to yield a power law

lim
k→∞

S∗k

S∗k−1
=

(
k

k − 1

)−γ
(1.8)

of exponent

γ = lim
k→∞

{
log

(
(k − 1)(1 − p)
1 + k(1 − p)

) /
log

(
k − 1

k

)}
=

2 − p
1 − p

. (1.9)

Simon’s process thus produces systems which feature a scale-free arrangement of elements (balls) by struc-
ture (bins) with a scaling exponent ∈ [2,∞) so that the distribution is always normalizable.

2 Summary of the model and main results

In Simon’s model of preferential attachment, new balls are thrown in bins which are, with probability (1−p),
chosen proportionally to their size or, with probability p, new bins as yet empty. We generalize it by allowing
balls to be thrown more than once and thus introduce a second probability, q, which is to balls what p is to
bins. We just suppose that all balls are tagged with a particular number and that we can guess what number
will be on the next ball by using the preferential attachment principle. This idea that balls can belong to
more than one bin is fundamental to many systems. Most complex systems are connected systems, i.e.
networks, such that the bins (structures in a network) used in preferential attachment should be connected

3
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to one another by sharing balls (nodes in a network). For example, sizes of communities on online social
networks have been shown to follow a power-law distributions9, but the same user (ball) can be found in
multiple communities (bins).

With this simple model, we are able to reproduce the statistical properties of systems that are nei-
ther completely structured, nor completely random. In fact, we show that systems produced according to
our structural preferential attachment principle have a topology similar to that of real networks featuring
community structure. More precisely, we reproduce the distributions of balls by bin (sizes), bins by ball
(memberships) and of neighbouring bins by bin (community degree) for social (cond-mat arXiv, Internet
Movie Database) and information (Internet) networks. In doing so, we find that most universal properties of
networks are united under a topology best described as a scale-free community structure.

3 Structural preferential attachment (SPA)

This section details the structural preferential attachment model. Using mean-field equations similar to those
used in section 1, we then obtain the thermodynamic limit of the process.

3.1 Description

If, as studies have recently implied10, 11, clusters of nodes are the fundamental building blocks of complex
networks, then they should influence the local growth of our model. For network growth, this means that
nodes should be linked via these structures instead of trying to build these structures by randomly linking
nodes. Structural preferential attachment (SPA) is thus based on the following idea: instead of only selecting
bins according to the preferential attachment principle, we also allow balls to be thrown more than once
(assuming they are tagged and come in multiple copies) and thus select them just as we select bins. We then
need two parameters: Simon’s probability p that the chosen urn is a new one as yet empty, and q which we
define as the probability that the chosen ball is a new one.

Figure 2: A step of structural preferential attachment. The probability of each type of events is indicated beneath it,
with schematization of possible options for that step. When new structures appear, the possible events depend on the
nature of the system: node based (s = 1) or link based (s = 2).

A step of SPA is illustrated on Fig. 2. Whenever we need to choose a structure or a node, this is done
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proportionally to its past activity. Remember, this does not imply that the number of memberships of a
node (i.e. the number of structures to which it belongs) directly affects its probability of being recruited. Its
number of memberships is simply the only information we have and thus encodes whatever property this
node might have that makes it popular. Similarly, it is natural to assume that structures probably recruit
members at a rate proportional to their current size. This does not mean that a community is more active
because it is bigger, but that it is more active because of a hidden property encoded in its size.

SPA encompasses both Simon’s model and the well-known model of network growth introduced by
Barabási and Albert12. Between structured systems and random networks, SPA produces network with the
aforementioned scale-free community structure. Noteworthy is the fact that only two parameters are needed
in this process (one for the modularity of the system and the other for its connectivity) and that these two
parameters are expected to be measurable (or estimable) in growing complex networks.

It is more natural to consider that the most basic structures are of size one (i.e. one node) like in Simon’s
urn scheme, because structures are simply an extension of the concept of node. However, in most real
networks (e.g. World Wide Web), the only information that we have are the links; hence the most basic
structures found in such networks are of size two. We will thus consider the most general case with an
undefined basic size s for structures. Note that this size is not a parameter of the model, but depends on the
nature of the system considered. We will refer to the case s = 1 as node-based systems (the fundamental
units being independent nodes) and to the case s = 2 as link-based systems (links being the basic unit).

3.2 Mathematical description

One can describe this new process in a manner akin to the one used for Simon’s simpler model. We shall
follow Nm, the number of nodes whose number of memberships is m, and S n, the absolute number of
structures enclosing n nodes. Using the same logic behind equation (1.1), it is straightforward to obtain

Nm(t + dt) = Nm(t) + dt
{ [

1 + p(s − 1) − q
] (m − 1)Nm−1(t) − mNm(t)[

1 + p(s − 1)
]
t

+ qδm,1

}
. (3.1)

Similarly, we can write for the structures:

S n(t + dt) = S n(t) + dt
{

(1 − p)
(n − 1)S n−1(t) − nS n(t)[

1 + p(s − 1)
]
t

+ pδn,s

}
. (3.2)

We once again transform these equations into time derivatives and switch variables to follow the distribution
of nodes by memberships and structures by size, Nm and Sn respectively. We simply normalize nodes and
structures number by the total number of each entity (i.e. qt nodes and pt structures at time t):

q
d
dt

[tNm(t)] = q
1 + p(s − 1) − q

1 + p(s − 1)
[(m − 1)Nm−1(t) − mNm(t)] + qδm,1 (3.3)

p
d
dt

[tSn(t)] = p
(1 − p)

1 + p(s − 1)
[(n − 1)Sn−1(t) − nSn(t)] + pδn,s (3.4)

From these expressions, we obtain the values at equilibrium:

for m ≥ 1 N∗m(s) =

∏m−1
k=1 kΓs∏m

k=1 (1 + kΓs)
where Γs =

1 + p(s − 1) − q
1 + p(s − 1)

, (3.5)

for n ≥ s S∗n(s) =

∏n−1
k=s kΩs∏n

k=s (1 + kΩs)
where Ωs =

1 − p
1 + p(s − 1)

, (3.6)
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whose limit fall with the following scaling exponents (summarized in Table 1):

γN = 1 +
1
Γs

; γS = 1 +
1

Ωs
(3.7)

system base s membership scaling γN size scaling γS

node (s = 1) (2 − q) / (1 − q) (2 − p) / (1 − p)
link (s = 2)

[
2 (p + 1) − q

]
/ (1 + q − p) 2/ (1 − p)

Table 1: Scaling behaviour. Exponents of the power-law distributions of structures per element and of elements per
structure at statistical equilibrium.

4 The data

This section gives more details on the datasets used in the Letter and on the methods employed to character-
ize their topology.

4.1 Community detection

Community detection in networks is a challenge in itself. In order to characterize the networks used in this
work, two independent and completely different algorithms were used: a link community algorithm10 and
the clique percolation method of CFinder11. Results use the link community algorithm, because it proved to
be faster and better suited to detect communities within communities. When possible, CFinder was used for
cross-checking the community partition.

Link communities10 This algorithm assigns links, instead of nodes, to communities. Groups of links
(one or more) are considered as a community depending on how similar the neighbourhoods of their nodes
are. The similarity of ensemble of nodes is measured by their Jaccard similarity coefficient. The correct
community partition is then selected according to a Jaccard threshold given by the user. A large community
can thus be composed of different smaller communities where the similarity of their members’ neighbour-
hoods is higher than in the larger community. The link community algorithm proved to be quite efficient at
detecting these nested communities.

CFinder and clique percolation11 The original clique percolation method used by CFinder is designed
to locate the k-clique communities of unweighted, undirected networks. This community definition is based
on the observation that a typical member in a community is linked to many other members, but not neces-
sarily to all other nodes in the community. In other words, a community can be interpreted as a union of
smaller complete (fully connected) subgraphs that share nodes. Such complete subgraphs in a network are
called k-cliques, where k refers to the number of nodes in the subgraph, and a k-clique-community is defined
as the union of all k-cliques that can be reached from each other through a series of adjacent k-cliques. Two
k-cliques are said to be adjacent if they share k − 1 nodes. CFinder is available at http://cfinder.org/.
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4.2 Internet Movie Database

The dataset used for the co-acting network of IMDb consists only of movies released after December 31st
1999. Interestingly, the degree distribution is almost identical to that published a decade earlier12 which
consisted of all movies released before the turn of the century. This suggests, since the two networks contain
distinct and exclusive ensembles of movies, that the growth parameters of the IMDb network are constant.
The network contains 7 665 259 links between 716 463 nodes (actors), where two actors share a link if
they are credited alongside another for at least one movie. It was only analysed using the link community
algorithm, because of memory issues with CFinder. The organization levels corresponding to actual movies,
which is how the dataset was originally compiled, was deemed unsuitable for the study because of the
presence of economic (limiting the number of actors in a movie) and artistic (typically requiring a minimal
number of characters in a movie) constraints. We believe that a community detection process on the network
actually frees the system from these constraints and yield communities of actors linked by genre, time,
location, etc.

4.3 arXiv

The cond-mat arXiv database uses articles published at http://arxiv.org/archive/cond-mat between April 1998
and February 2004. In this network, an article written by n co-authors contributes to a link of weight (n− 1)
between every pair of authors. The unweighted network was obtained by deleting all links with a weight
under the selected threshold of 0.1; resulting in a network of 125 959 links between 30 561 nodes (authors).
This dataset was compiled, analysed and presented in11.

4.4 Internet

This dataset is a symmetrized snapshot of the structure of the Internet at the level of autonomous systems,
reconstructed from BGP tables posted at archive.routeviews.org. This snapshot was created by Mark New-
man from data for July 22nd 2006 and was not previously published. The network contains 22 962 nodes
and 48 436 links.

5 Comparing numerical results with empirical data

In this final section, we detail how SPA can be compared to real systems. Lastly, for systems with larger and
sparser communities, we show how to go from a community organization back to a description of how links
are distributed within the system.

5.1 Levels of organization

The first step when looking to compare the structure of real networks with systems produced by SPA is to
analyse the empirical data. As mentioned earlier, our main algorithm (the link community algorithm10) has
a single parameter to tune for community detection: its Jaccard threshold. The Jaccard threshold embodies
how similar the neighbourhoods of the ends of two links must be in order for these links to be considered
as part of the same link community. Tuning this parameter, demanding how tightly connected a group of
nodes must be in order to be labeled as a community, allows us to look at different levels of organization
within the network. If too small, the algorithm will most likely end up with communities corresponding
to the connected components of the networks. If too big, significant communities will be broken up into
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Figure 3: Comparison between link-based and node-based SPA. Community structure of the cond-mat arXiv as
measured by the link community algorithm of Ahn et al. 10 (symbols) and analytical description of link-based SPA
(continuous lines) or node-based SPA (dotted lines) used to approximate a link-based system by ignoring structures of
size one. The degree distributions are obtained by assuming homogeneous mixing 13. The two black lines perfectly
overlap, while the membership distribution of node-based SPA is slightly shifted once we ignore structures of size one.
Because node-based SPA results in a network with more than one component, its structure is actually closer to that of
the real arXiv system.

different smaller ones. In this paper, we proceeded by sweeping this parameter in order to find the level of
scale-free organization.

5.2 A note on node-based and link-based systems

All results presented in this work used a node-based version of SPA. Which means that new structures
contain a single node and that they will remain disconnected from the other components of the network until
they reach an older node. For the IMDb data, this choice is not even a question as the network contains
many such satellites structures (even some of size one) which are disconnected from the giant component.
In other systems, like the arXiv network, the choice can be more complicated. One might be tempted to use
a link-based system process to reproduce the arXiv, since it is a co-author network and thus cannot contain
isolated nodes. However, it does contain some disconnected components, which a link-based process like
the Barabási-Albert model12 is incapable of producing. Hence, it seemed logical to use the node-based
process and simply remove the structures of size one (nodes who failed to co-author a paper) from the final
system.

As a final point on the subject, it is interesting to note that we have been able to reproduce all results
using both the node-based and link-based version of SPA. For example, see Fig. 3 for a comparison between
the analytical prediction for link-based SPA and node-based SPA when ignoring structures of size one. In
sufficiently large and connected systems, the distinction between the two seems mainly conceptual.

5.3 Results

Figure 4 presents our results for the arXiv network, the Internet and the Internet Movie Database. The arXiv
data is completely shown, but the Internet is illustrated for communities of size 3 or bigger (as done by the
authors of the detection algorithm10) because the algorithm can overestimate the number of communities of
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Figure 4: Community structure and structural preferential attachment (SPA). �: distributions of topological
quantities for the ensemble of (a) the cond-mat arXiv circa 2005 and (b) Internet at the level of autonomous system
circa 2007. Solid lines: average over multiple realizations of the SPA process with (a) p = 0.56 and q = 0.59;
b) p = 0.04 and q = 0.66. The empirical networks were analysed using the link community algorithm10 with
Jaccard thresholds of (a) 0.13 and (b) 0.08. (c) The mean number of links per node within a given community as
a function of the community size in the IMDb network. The fit is done using a logarithmic function of the form
f (x) = a · log(x + b) − c. (d) The IMDb network studied with the link community algorithm using a Jaccard threshold
of 0.18. The SPA simulation uses p = 0.47, q = 0.25 and the binomial connection scheme described in section 5.4
with the results of figure 4(c).

size 2 and the goal is here to highlight the connectedness of communities. For the IMDb, the community size
distribution is normalized for communities of size 3 or bigger, but the communities of size 2 are considered
in the membership and degree distributions. These results highlight how these systems follow a scale-free
community structure and how SPA can be used to predict behaviour outside of the model’s specification.
More precisely, the numerical systems predict how the communities are interconnected via their overlap,
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reproducing the exponential behaviour and the heavy tail of the community degree distribution.
It is interesting to note that averaging over many iterations of the SPA process highlights the distribution

cut-off caused by the finite size of the system. This effect is mostly visible in Fig. 4(a). On the other
hand, because the position of the transition between exponential and power-law behaviour observed in the
cumulative community degree distribution is highly dependent on the amount of “leading” structures (i.e.
the number of structures which are able to break away from the majority and thus have a significantly bigger
size), it can differ slightly between two realizations of SPA. In this context, averaging over multiple iterations
of the same process partly smooths out the transition. For this reason, a single realization of the model is
also presented on Fig. 4(b) to better illustrate the behaviour of community degree in a finite system.

5.4 From communities, back to links

This last subsection presents results which, although preliminary, imply that individuals within a given social
community can be approximated as being randomly connected.

The first step in shifting our point of view from communities back to links is to evaluate just how
connected the communities of our systems are. Figure 4(c) illustrates the mean number of links per node
within a given community as a function of the community size, which is found to grow logarithmically.
Using this measure to determine the density of a structure of a given size, we simply throw a dice for each
possible link to determine which links actually exist, while respecting the actual density of the network. This
allows us to move from a potential degree distribution to an estimated degree distribution. If the binomial
approximation (all links within a given community exist only with a certain probability) is correct, this
estimated degree distribution should be close to the actual degree distribution of the system we are trying
to reproduce. According to Fig. 4(d), this is indeed the case. It is easy to note that the number of nodes
of small degree is overestimated by SPA. This is either a consequence of SPA producing too many small
satellite components around the main network, or a consequence of IMDb sampling method, where an actor
who has only acted in a small scale short film with one or two co-actors is more likely to be absent from the
database than actors with hundreds of co-actors.
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HÉBERT-DUFRESNE et al. (2011) SPA: Supplemental Material

8. Simon, H. A. Models of Man (John Wiley & Sons, 1961).

9. Zhang, Q. & Sornette, D. Predicted and verified deviation from Zipf s law in growing social networks.
arXiv 1007.2650 (2010).

10. Ahn, Y.-Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale complexity in networks.
Nature 466, 761 (2010).
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