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Random networks are a powerful tool in the analytical modeling of complex networks as they allow us to write
approximate mathematical models for diverse properties and behaviors of complex systems. These models are
often used to study stochastic processes like percolation, where the giant connected component breaks down as
edges are removed, yet they fail to properly account for the size of that component, even in a deterministic setting
where all edges exist. Here, we introduce a simple conceptual step to account for such connectivity constraints
in existing models. We distinguish between network neighbors based on two types of connections that can lead,
or not, to the giant component, which we refer to as critical and subcritical degrees. The giant component is the
largest unique component of a network that scales with the network’s size under our model. It is analogous to
many properties of interest, such as the largest epidemic possible on a contact network or the connectivity of an
infrastructure network. Accounting explicitly for this component also allows us to capture important structural
features of the network in a system of only one or two equations. When applied to sparse connected networks,
we show that our approach compares favorably with the predictions of state-of-the-art models, like message
passing, which require a number of equations that are linear in system size. We discuss potential applications
of this simple framework for studying infrastructure networks where connectivity constraints are critical to the
function of the system.
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Introduction: Models of networks. Random network mod-
els are a useful tool that allows simple mathematical analysis
of the structure and properties of real complex networks [1].
Such models are typically parameterized with local connec-
tion rules enforcing structural constraints while leaving the
rest of their structure random [2,3]. In theory, these rules
should encode constraints that capture important features of
real networks while the randomness reduces bias and pre-
serves mathematical tractability. One of the most popular
versions of this approach is the Configuration Model (CM),
specified using the degree sequence of the network while
assuming that edges are connected at random [4]. Many
generalizations have been introduced over the years, includ-
ing degree-degree correlations between neighbors [5], motifs
[6,7], or more macroscopic structures like k-core or onion
decomposition [8–11].

One notable use of this approach is the study of site or
bond percolation on random networks, which is used to model
the robustness of real networks to random failure or targeted
attacks [12] and understand how they support dynamics such
as the spread of epidemics or cascading failures [13]. In these
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contexts, models can approximate the percolation threshold
of real networks quite well [10,14–16], but typically fail to
capture the actual size of the largest connected component far
above the threshold. Given that the size of this component is
related to the robustness against damage or small changes in
edge functionality, it is unfortunate that most models dramat-
ically fail in the regime where there is no damage or changes
to the structure.

Here, we propose shifting the perspective on the infor-
mation encoded in the stubs (i.e., the half-edges matched
to generate the network)—from purely local to global—and
illustrate how this can yield simple mathematical models
that are more realistic at the global scale. Focusing on the
problem of preserving the size of the largest connected com-
ponent, we introduce a new computationally informed model
based on the idea of critical connections. In a nutshell, our
goal is to specify a critical substructure of interest identi-
fied computationally beforehand—like the largest connected
component—and model edges that contribute to this critical
substructure separately from other edges of the network. The
resulting model can implicitly account for important network
features, such as degree correlations or unknown statistics,
that drive the connectivity of the substructure. By changing
the perspective on the information encoded in stubs, thereby
moving some of the complexity of the problem to computa-
tional preprocessing, we hope to provide a path toward rich
yet simple new models that further the analytical study of
complex networks.
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Random networks with a constrained giant component. The
core idea of our approach builds upon the classic CM by con-
sidering two types of connections: tagging some connections
as critically important and therefore following specific rules,
and others as less important, subcritical connections. This
tagging procedure can be arbitrarily complex, but must result
in a joint degree distribution P(s, c) over the “subcritical de-
gree” (s) and “critical degree” (c) of every node. In a physical
sense, only the latter will have the potential for supercritical
effects under bond percolation, while subcritical connections
can only contribute second-order effects.

The critical constraint we explore involves identifying con-
nections that point toward the giant component of a network.
Doing so will not only account for the size of that component
but also for some of its structure. To see this, consider two
nodes of degree 100, both in the giant component, but one
has 99 neighbors of degree 1, while the other has none and is
part of multiple loops over the giant component. Both nodes
are connected to the giant component, but the second more
robustly so, and our approach accounts for this difference.

Critical CM. We assume an undirected network where
every connection between nodes i and j can be thought of
as two directed edges (i, j) and ( j, i). In this case, critical
connections are tagged through the following procedure:

(1) Go over every directed edge (i, j) in the network.
(2) Temporarily mask all edges pointing toward i, includ-

ing ( j, i), to avoid backtracking.
(3) Ask whether the component downstream from (i, j)—

that is, the number of nodes k for which at least one path
excluding i exists from j to k—is larger than some threshold
value (we use 1% of the total number of nodes).

(4) If yes, increase the critical degree ci of i by 1. If not,
increase the subcritical degree si of i by 1.

(5) Restore all directed edges pointing toward i.
(6) After going over all pairs, return a distribution P(s, c).
Based on the joint critical-subcritical degree distribution

P(s, c), one can then construct a random network that is coher-
ent with the tagging procedure, such that critical degrees in the
original network data remain critical in a randomized version
of the data. To do so, we rely on the concept of excess degree,
that is, the number of other stubs available when one reaches
a node through a given stub. We then define this Critical CM
as follows:

(1) A subcritical stub can only connect with the stub of a
node whose excess critical degree is 0.

(2) A critical stub can only connect with the stub of a node
whose excess critical degree is at least 1.

Stubs are otherwise connected uniformly at random. Note
that the second rule has a condition based on the excess critical
degree of possible neighbors—that is, the number of critical
stubs that leave that node—which assures that there exists a
giant component that contains all nodes with at least one criti-
cal stub, therefore preserving the size of the giant component.
The resulting model is illustrated in Fig. 1.

Size of the giant component. We now consider the infi-
nite random network ensemble defined by the aforementioned
connection rules and the joint distribution P(s, c) (with ev-
erything else random), and compute the expected size of the
giant component. We follow a standard approach based on
probability-generating functions (PGFs) [17] which, while

FIG. 1. Illustration of a Critical Configuration Model informed
by the giant component of a network. Stubs are tagged as critical
(red) and subcritical (black) based on whether they attach the node
to the largest connected component. Nodes with a critical degree of
at least 1 are then known to be in the giant component, but not all
stubs in the giant component are critical, as some lead to dead ends.

very simple, give us an approximate solution to the problem.
We highlight where the approximation comes into play and
explain the slightly more involved formalism presented in the
Supplemental Material [18].

When selecting a node at random in a random network
drawn from the Critical CM, it will have a subcritical degree s
and a critical degree c drawn from a joint distribution P(s, c),
which is generated by

G0(x, y) =
∑

s,c

P(s, c)xsyc. (1)

When following any type of stubs, the type of stub through
which we reach the neighboring node will be constrained by
the excess degree of the reached node. Regardless, the joint
degree pair of the reached node will be biased by either its
subcritical degree s or critical degree c as per the friendship
paradox, since a random edge is ten times more likely to reach
a node of degree 10 than a node of degree 1. To that effect, we
introduce the neighbor-generating function f (x, y):

f (x, y) = ∂G0(x, y)

∂x
+ ∂G0(x, y)

∂y
, (2)

which is not normalized and therefore not a PGF.
More specifically, when following a subcritical stub, the

connection rules defined previously state that we will reach a
node proportionally to its number of subcritical stubs (s), or
of critical stubs if it has only one (c = 1). The joint excess
degree distribution of the reached node is therefore generated
by Gs

1(x, y) and written as

Gs
1(x, y) =

∑
s,c P(s, c)(δc,1xs + sδc,0xs−1)
∑

s,c P(s, c)(δc,1 + sδc,0)
= f (x, 0)

f (1, 0)
, (3)

where δa,b is the Kronecker delta equal to 1 if a equals b and
0 otherwise. Note that Gs

1(x, y) does not depend on y, since
the critical excess degree of the reached node is 0, as per
the connection rules. Similarly, when following a critical stub,
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the connection rules state that we reach nodes proportionally
to their total degree as long as they have an excess critical
degree of at least 1. The joint excess degree distribution of
these reached nodes is therefore generated by

Gc
1(x, y) =

∑
s,c P(s, c)(cδ̄c,1xsyc−1 + sδ̄c,0xs−1yc)

∑
s,c P(s, c)(cδ̄c,1 + sδ̄c,0)

= f (x, y) − f (x, 0)

f (1, 1) − f (1, 0)
, (4)

where δ̄a,b ≡ 1 − δa,b.
These equations are, unfortunately, only an approximation.

The excess degree of the node reached by a random edge
depends not only on the type of stub we follow, but also
on the type of the node to which that stub belongs. Indeed,
while the model did not specify it directly, there are three
types of nodes: nodes with zero critical stubs, nodes with a
single critical stub, and nodes with more than one critical stub.
We provide an exact treatment to account for their different
structural roles in the Supplemental Material [18], where we
show that the simpler description presented here provides an
excellent approximation, nevertheless.

Once we know the distribution of nodes at the end of ran-
dom stubs, we can then solve for the giant component of the
network under a bond percolation process where every edge
exists independently with probability p. We denote us and uc

the probabilities that a subcritical or critical stub (respectively)
does not lead to the giant component. The first, us, is fixed to
1 by construction, whereas the second is the solution of the
following self-consistent equation:

uc = 1 − p + pGc
1(1, uc). (5)

In other words, the probability that a critical stub does not
lead to the giant component must be equal to the probability
that the remaining stubs of the reached node do not lead to the
giant component either. This occurs if the critical stub belongs
to an edge that has been removed (probability 1 − p), or, when
the edge has not been removed, if none of the other critical
stubs of the reached node lead to the giant component either
(probability pGc

1(1, uc)). References [10,13,21] provide more
details on this self-consistent argument.

Having solved Eq. (5), we may now compute the size of
the giant component as the fraction of nodes for which at least
one critical stub leads to it. Recalling that an individual critical
stub does not lead to the giant component with probability uc,
we find:

S =
∑

s,c

P(s, c)
[
1 − uc

c

] = 1 − G0(1, uc). (6)

Notice that uc = 0 is the only nontrivial solution to Eq. (5)
when p = 1, meaning that the nodes with at least one critical
stub will be connected to the giant component with probability
1 in the limit of infinite networks in the absence of damage, as
expected. In other words, our model exactly preserves the size
of the largest connected component perfectly when all edges
exist, and approximates its size under a percolation process
(p < 1).

Connections with other models. Most, if not all, random
network models can be seen as mathematical frameworks used
to compress complex network data based on some important

features or constraints. Our approach differs from common
models in two ways.

First, instead of calibrating the model based on observed
local properties from network data (e.g., degree distribution
or degree-degree correlations) and validating the model by
predicting the robustness of the corresponding network, the
critical CM combines the calibration and validation steps. It
uses information about how every node is embedded within
the components found in the network data, thereby calibrating
the model based on global information (i.e., the size of the
largest connected component), and then attempts to extrapo-
late to the perturbed version of the same network.

Second, calibrating the critical CM requires more compu-
tational preprocessing than the CM. It does not merely count
edges around every node as in the CM—an operation whose
complexity scales as the number of edges E—but tags them all
based on some criterion for “critical” connections, which can
be costly to evaluate. A naive implementation of the procedure
described would scale as E for every edge, and therefore as E2

for the full preprocessing of a network of E edges.
There is therefore an important conceptual jump from the

CM to the critical CM, since we now distinguish types of
connections and have two different types of stubs informed by
global connectivity patterns. This is similar to the difference
between the CM and the popular Stochastic Block Model,
which is meant to capture mesoscopic block or community
structure in networks [25], which does not directly translate
to a good description of dynamics like percolation [10]. For
the critical CM, because we do not need a complicated in-
ference procedure to tag stubs and because the role of one
type of stub is fixed by construction (recall that us = 1), the
resulting model is mathematically as complex as the CM, as
we only need to solve for a single polynomial self-consistent
quantity.

By contrast, state-of-the-art approaches rely on a similar
conceptual jump but greatly increase the complexity of the re-
sulting mathematics. The Message Passing Approach (MPA)
is based on the idea that all stubs and all edges are distin-
guishable, and therefore tags the stub from node i leading to
node j as a unique edge type i → j [22,26]. It then follows
a similar calculation: Assuming an infinite number of nodes
of any type (i.e., ignoring feedback through loops) whose
degree sequence in types of stubs is explicitly given by the
adjacency matrix of the true network, we can write a system of
2E -coupled self-consistent equations describing percolation
on a network with E edges.

Also, depending on the joint distribution P(s, c), the con-
nection rules listed in Sec. II may enforce some level of
degree correlation between neighbors. For instance, if only
low-degree nodes have c = 0, then the critical CM will gen-
erate networks with degree correlations differing from that of
the classic CM. In a sense, one could also view the critical
CM as a crude version of the correlated configuration model
[5] or of the Layered Correlated Configuration Model [10].
However, our preliminary investigation did not reveal any
systematic relationship between the critical CM and these two
models (see Supplemental Material [18]).

The critical CM therefore lies somewhere in between the
CM and MPA. It can be seen as a fine-grained version of
the CM where stubs are distinguished based on the structure of
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the nonbacktracking component to which they lead. Alterna-
tively, the critical CM can be seen as a coarse-graining of the
MPA where we compress the 2E types of unique connections
into only two, again based on the nonbacktracking component
to which they lead. By comparing the critical CM to the
CM and MPA, we hope to justify the development of more
creative random network models. In other words, we can,
in theory, efficiently compress mathematical models using
network analysis as a preprocessing tool.

Results. We first compare the results of the critical CM to
other models and simulations based on the giant component
of a common corporate ownership dataset, shown in Fig. 2.
This network was chosen because the CM completely fails
to match simulations of a percolation process, in large part
because the giant component contains a gigantic hub in its pe-
riphery. The CM completely overestimates the robustness of
the giant component by underestimating the epidemic thresh-
old, while conversely underestimating the final relative size of
this giant component at p = 1. By comparing to simulations
on a connected subset of the CM [20], we can show that by
capturing the complete size of the giant component, one also
captures the higher-than-expected percolation threshold due
to the prevalence of negative degree correlations required for
this connectivity (hubs have to connect multiple low-degree
nodes). Interestingly, the critical CM does a much better job
at capturing the unique structure of this network by accounting
not only for the size of the giant component but also for im-
plicit correlations between the degree of nodes and their role
in the cohesion of the giant component (the so-called critical
degree). This highlights how our analytical model differs from
a uniform connected subset of the CM, but it is an effective
model that captures how the degree sequence of the network
interacts with its giant component through the correlations
between the degree of a node and its critical degree. In fact,
the critical CM mimics results from the MPA very closely
while decreasing the number of equations by a factor equal
to twice the number of edges (1 versus 9304 self-consistent
equations).

We further compare the Critical CM to the classic CM and
to simulations for four other connected networks in Fig. 3.
These networks were chosen to highlight how the previous
results hold in technological networks (e.g., the structure of
the Internet) where the connectivity of the empirical net-
works might be surprising to the CM based on their degree
distributions alone. However, in denser networks such as
protein-protein interaction networks and social networks, the
critical CM offers less of a gain and falls closer to the classic
CM. The usefulness of our approach therefore relies on the
structure of interest, in this case, the giant component, being
surprising to classic random networks.

We can build on this intuition and look at the behavior
of the critical CM on regular trees where all nodes have the
same degree, up to a certain number of layers L where all
nodes have degree one to close the tree. These structures
are interesting for three reasons. First, our PGFs assume a
treelike structure [most notably in Eq. (5), where we assume
all stubs leaving a node are independent] but do not perform
well on trees because of their highly constrained structure
[10]. Second, the fact that trees are connected as a single
component is surprising under the lens of most random net-

FIG. 2. (Top) The giant component of a corporate ownership
network [19]. Node size corresponds to degree (linearly from 1 to
552) and node color corresponds to closeness centrality (inverse of
the average distance to other nodes). This is an interesting network
structure in part because of its extremely skewed degree distribution,
and because its most connected node has a much higher degree than
its second most connected (552 vs. 178), but the former is located in
the periphery of the network while the latter is located in its core.
(Bottom) We simulate bond percolation on this network (Simula-
tions) and compare the results against three analytical models: the
Message Passing Approach (MPA; 9304 self-consistent equations),
the Configuration Model (CM; 1 self-consistent equation), and our
Critical Configuration Model (Critical CM; 1 self-consistent equa-
tion). We also compare the results against simulations on a connected
subset of the CM (Connected Sims [20]) to show that the critical CM
does more than capture the size of the connected component at p = 1.

work models, given their high number of nodes of degree one
(which explains why configuration models do not perform
well on trees). Third, the MPA is exact on trees, where it
will see the finite size of the system and exactly predict the

L022050-4



RANDOM GRAPHS WITH SPECIFIC DEGREE … PHYSICAL REVIEW RESEARCH 7, L022050 (2025)

FIG. 3. Bond percolation on the Critical Configuration Model (Critical CM) and Configuration Model (CM) compared with simulations
on the giant connected component of: (top left) the structure of the Internet at the level of autonomous systems [22], (top right) the peer-to-peer
Gnutella network [23], (bottom left) the Arabidopsis protein-protein interaction network [24], and (bottom right) a coauthorship network from
the arXiv preprint archive [17]. The insets show the (binned) distribution of downstream component sizes per directed edge. The distribution
is highly bimodal, with edges either leading to a very large macroscopic fraction of the network or to a very small subset of the network. The
critical CM is therefore highly robust to the choice of the threshold for criticality, as long as that threshold lies somewhere between 1% and
90% of the entire system.

distribution of small component sizes while predicting the
lack of supercritical giant component [26].

The results of the critical CM on regular trees are shown
in Fig. 4. As trees grow, only nodes in the first or second
layer around the root will have more than one critical stub;
all other nodes will have a single critical stub pointing toward
the root of the tree. The critical CM therefore creates a very
small core of central nodes around which we have directed
chains of nodes, all with a single critical stub pointing toward
the core. These chains make up the vast majority of nodes,
and are always subcritical for p < 1 while only the small core
can be supercritical. As the relative size of the core vanishes,
the critical CM therefore converges to the same prediction as
the MPA, but for a conceptually different reason. While MPA
sees the finite size of the system, the critical CM instead sees

chains of critical stubs that are subcritical as soon as one edge
is removed. Both predict the absence of a phase transition
below p = 1.

Conclusion. Random network models are used for multi-
ple reasons across network science and beyond. While many
problems and dynamical systems are impossible to solve on
a fixed network structure, they are often solvable on infinite
random network ensembles. When these models work well,
we build intuition about which structural constraints matter
the most for the problems and dynamics of interest. This,
in turn, also allows us to control for important features and
therefore provide important null models for network analyses.
Indeed, we often need to ask how surprising a network fea-
ture is given some other metrics. This is why modularity or
even degree assortativity control for degree distribution, using
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FIG. 4. Comparison of the behavior of the CM and critical CM
parametrized by data coming from perfect trees of coordination
number 3 and different depths L. As the trees grow, the critical CM
converges to directed chains where all nodes have a single critical
stub pointing toward the core of the tree. Those chains preserve the
treelike structure of the original network and converge to a system of
equations that predicts the absence of the giant component for any
T < 1. This is the same prediction as the MPA, which effectively
sees the finite size of the system and therefore does not predict any
giant (infinite) connected component [26].

the CM as an underlying null model. Through this pipeline,
improvements in random network models improve much of
network science.

Given that network scientists often care about global prop-
erties of network structures, such as their connectivity and
robustness, we need random network models that can control
for these features. Unfortunately, most models are only built
around simple local connection rules, leaving a significant
gap in the network science toolbox. While we certainly do
not claim that the critical CM introduced here should become
a standard null model for network analyses and mathemati-
cal descriptions, it highlights the potential for rethinking the
information encoded in the stubs to design models that re-
produce ever more realistic network structures. As illustrated
here, such a change in perspective may involve a more compli-
cated parametrization requiring computational preprocessing,
while nevertheless having a mathematical description that re-
mains parsimonious [27].

Future variations of our approach could consider a
parametrization of random networks based on statistics of
their minimum spanning tree or dynamical features relevant to
network control. Along these lines, we have explored similar
models constrained by k-core decomposition in Refs. [8–10].
There remain many more models to explore. This line of
research can be summarized as two simple questions: What
features do we care about in a given network structure, and
how can we best describe networks using these features? And
when the answer to the first question is the global connectivity
of a network, variations of the critical CM presented here
should prove useful.
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1 Correlations in the Critical Configuration Model

As mentioned in the main text, it is clear that some level of degree correlation can be enforced by the joint distribution

P (s, c) and the connection rules listed in Sec. II.A. As a preliminary investigation, we compare the predictions for the size

of the giant component under random edge removal obtained using following five models:

▷ the Configuration Model (CM) [2] which fixes the degree distribution;

▷ the Correlated Configuration Model (CCM) [3] which fixes the degree distribution as well as the degree-degree

correlations;

▷ the Critical Configuration Model (main text) which fixes the degree distribution as well as the size of the giant

component when edges have not been removed (i.e. no percolation);

▷ the Layered Correlated Configuration Model (LCCM) [4] which fixes the degree distribution, the k-core and onion

decompositions [5], as well as degree-layer-degree-layer correlations;

▷ the Message Passing Approach (MPA) [6] which fixes the correlations imposed by the adjacency matrix but neglects

the correlations between the state of the neighbors of any given vertex [7].

The results of a preliminary investigation on the matter are presented in Supp. Tables 1 and 2 and in Supp. Figs. 1 and 2.

Unfortunately, no clear relationship with the density or the assortativity can be identified when it comes to predict the

role of density or correlation on the accuracy of the Critical Configuration Model. Further investigation is needed, which

goes beyond the scope of this work.

Supp. Table 1: Network datasets used for this investigation, as well as a few global properties. Note that the suffix GC
is added to denote network datasets for which we only considered the largest connected component.

Dataset name number of vertices density (×10−3) assortativity Ref.
ArabidopsisGC 4519 1.050 -0.197 [8]
arXivGC 28502 0.304 0.138 [9]
CorporateGC 4475 0.465 -0.185 [10]
GnutellaGC 36646 0.132 -0.104 [11]
InternetCaida 26475 0.152 -0.195 [6]
GermanRoadsGC 1168 1.824 0.025 [12]
InternetOregon 11461 0.498 -0.164 [13]
PGP 10680 0.426 0.238 [14]
PolishGrid 3374 0.715 0.050 [15]
PowerGrid 4941 0.540 0.003 [16]

Supp. Table 2: Average absolute difference between the prediction of the size of the giant component between all pairs
of models considered in the study. The name of each model has been shortened as CM→C, CCM→CC, CritCM→Cr,
LCCM→LCC and MPA→M.
Dataset name C–CC C–Cr C–LCC CC–Cr CC–LCC Cr–LCC C–M CC–M Cr–M LCC–M
ArabidopsisGC 0.0265 0.0153 0.0133 0.0114 0.0148 0.0055 0.0141 0.0175 0.0082 0.0030
arXivGC 0.0062 0.0029 0.0151 0.0037 0.0095 0.0124 0.0185 0.0130 0.0158 0.0037
CorporateGC 0.1273 0.1332 0.1336 0.0149 0.0180 0.0050 0.1340 0.0214 0.0083 0.0035
GnutellaGC 0.0369 0.0270 0.0347 0.0099 0.0034 0.0084 0.0346 0.0036 0.0083 0.0003
InternetCaida 0.0774 0.0331 0.0720 0.0442 0.0054 0.0389 0.0712 0.0061 0.0381 0.0008
GermanRoadsGC 0.0479 0.0085 0.0084 0.0502 0.0455 0.0127 — — — —
InternetOregon 0.0428 0.0159 0.0374 0.0269 0.0054 0.0215 — — — —
PGP 0.0319 0.0165 0.0550 0.0225 0.0242 0.0440 — — — —
PolishGrid 0.0170 0.0189 0.0254 0.0225 0.0265 0.0214 — — — —
PowerGrid 0.0110 0.0170 0.0217 0.0145 0.0185 0.0110 — — — —
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Supp. Fig. 1: Relative size of the giant connected component as predicted by the Configuration Model (CM) [2], the
Correlated Configuration Model (CCM) [3], the Critical Configuration Model (CritCM; see main text) and the Message
Passing Approach (MPA) [6] as a function of the edge occupation probability p. The relative size of the largest connected
component as obtained from the numerical simulation of bond percolation of the original network datasets is also shown
(Sims). See Table 1 for details about the datasets.
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Supp. Fig. 2: Relative size of the giant connected component as predicted by the Configuration Model (CM) [2], the
Correlated Configuration Model (CCM) [3] and the Critical Configuration Model (CritCM; see main text) as a function
of the edge occupation probability p. The relative size of the largest connected component as obtained from the numerical
simulation of bond percolation of the original network datasets is also shown (Sims). See Table 1 for details about the
datasets.
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2 Exact description

This section presents an exact description of the formalism introduced in the main text through the multitype formalism

of Ref. [1], and discusses the conditions for which the two approaches coincide.

Joint degree distribution

The joint degree distribution P (s, c) specifies the fraction of vertices with s subcritical stubs and c critical stubs. It is the

main mathematical object that must be provided to the model.

Types of vertices

The vertices are divided into three types based on their number of critical stubs. Type 0 vertices do not have critical stubs

and are de facto excluded from the giant component identified at the preprocessing stage of the Critical Configuration

Model. They correspond to a fraction

w0 =
∑
s

∑
c

P (s, c)δc0 =
∑
s

P (s, 0) (1a)

of all vertices. Type 1 vertices have only 1 critical stub and correspond to a fraction

w1 =
∑
s

∑
c

P (s, c)δc1 =
∑
s

P (s, 1) (1b)

of all vertices. Type 2 vertices have at least 2 critical stubs and correspond to a fraction

w2 =
∑
s

∑
c

P (s, c)(1− δc0)(1− δc1) =
∑
s

∑
c>1

P (s, c) (1c)

of all vertices. Clearly, w0 + w1 + w2 = 1 since the joint degree distribution P (s, c) is normalized.

Types of connections

There are 4 ways vertices can be connected to each other according to the rules described in the main text:

▷ (0s–0s): vertices of type 0 are connected through their subcritical stubs;

▷ (1c–1s): vertices of type 1 are connected through one critical stub and one subcritical stub;

▷ (1c–2s): vertices of types 1 and 2 are connected through one critical stub (type 1) and one subcritical stub (type 2);

▷ (2c–2c): vertices of type 2 are connected through their critical stubs.

It is convenient to define the following first-order auxiliary quantities

M0s =
∑
s

∑
c

sP (s, c)δc0 =
∑
s

sP (s, 0) (2a)

M1s =
∑
s

∑
c

sP (s, c)δc1 =
∑
s

sP (s, 1) (2b)

M1c =
∑
s

∑
c

cP (s, c)δc1 =
∑
s

P (s, 1) = w1 (2c)

M2s =
∑
s

∑
c

sP (s, c)(1− δc0)(1− δc1) =
∑
s

∑
c>1

sP (s, c) (2d)

M2s =
∑
s

∑
c

cP (s, c)(1− δc0)(1− δc1) =
∑
s

∑
c>1

cP (s, c) , (2e)
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which are proportional to the fraction of all stubs that are of a given type and emanating from a given type of vertices1.

The average number of each type of stub per vertex (i.e., the typed degree) is obtained by dividing by the fraction of

vertices of the corresponding type2.

It is also convenient to introduce the second-order auxiliary quantities

M0s0s =
∑
s

∑
c

s(s− 1)P (s, c)δc0 =
∑
s

s(s− 1)P (s, 0) (3a)

M2s2c =
∑
s

∑
c

scP (s, c)(1− δc0)(1− δc1) =
∑
s

∑
c>1

scP (s, c) (3b)

M2c2c =
∑
s

∑
c

c(c− 1)P (s, c)(1− δc0)(1− δc1) =
∑
s

∑
c>1

c(c− 1)P (s, c) . (3c)

Generating functions

We define the following three generating functions associated with the joint degree distribution of each type of vertices:

G0(x) =
1

w0

∑
s

P (s, 0)
[
1− T + Tx0s

]s
(4a)

G1(x) =
1

w1

∑
s

P (s, 1)
[
1− T + Tx1c

]s [
1− T +

T (M1sx1s +M2sx2s)

M1s +M2s

]
(4b)

G2(x) =
1

w2

∑
s

∑
c>1

P (s, c)
[
1− T + Tx1c

]s[
1− T + Tx2c

]c
, (4c)

where edges have been kept (removed) with probability T (1− T ). We also introduced x = (x0s, x1s, x1c, x2s, x2c), where

the subscripts keep track of the type of the neighbors and of the type of stubs through which it is reached. The underlying

assumption behind the last bracket in Eq. (4b) is that stubs are chosen uniformly when creating edges3.

We also introduce the following generating functions associated with the joint excess degree distribution:

F0s(x) =
1

M0s

∑
s

sP (s, 0)
[
1− T + Tx0s

]s−1
(5a)

F1s(x) =
1

M1s

∑
s

sP (s, 1)
[
1− T + Tx1c

]s−1
[
1− T +

T (M1sx1s +M2sx2s)

M1s +M2s

]
(5b)

F1c(x) =
1

M1c

∑
s

P (s, 1)
[
1− T + Tx1c

]s
(5c)

F2s(x) =
1

M2s

∑
s

∑
c>1

sP (s, c)
[
1− T + Tx1c

]s−1[
1− T + Tx2c

]c
(5d)

F2c(x) =
1

M2c

∑
s

∑
c>1

cP (s, c)
[
1− T + Tx1c

]s[
1− T + Tx2c

]c−1
, (5e)

where the subscript indicates the type of the vertex and the type of the stubs via which it has been reached.

1For example, M2s is proportional to the fraction of all stubs that are subcritical and emanating from vertices of type 2.
2For example, the average number of subcritical stubs emanating from vertices of type 2 is M2s/w2.
3This is a basic assumption in most if not all variants of the configuration model.
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Supp. Fig. 3: The giant component of a corporate ownership network [10] for which w1 = 0.93, α1 = 5.46 and α2 = 0.89.

Size of the extensive component

We define u = (u0s, u1s, u1c, u2s, u2c) as the probabilities that a vertex reached via one specific type of stub does not lead

to the extensive component4. These probabilities are the solution of the following set of self-consistent equations [1]

u0s = F0s(u) =
1

M0s

∑
s

sP (s, 0)
[
1− T + Tu0s

]s−1
(6a)

u1s = F1s(u) =
1

M1s

∑
s

sP (s, 1)
[
1− T + Tu1c

]s−1
[
1− T +

T (M1su1s +M2su2s)

M1s +M2s

]
(6b)

u1c = F1c(u) =
1

M1c

∑
s

P (s, 1)
[
1− T + Tu1c

]s
(6c)

u2s = F2s(u) =
1

M2s

∑
s

∑
c>1

sP (s, c)
[
1− T + Tu1c

]s−1[
1− T + Tu2c

]c
(6d)

u2c = F2c(u) =
1

M2c

∑
s

∑
c>1

cP (s, c)
[
1− T + Tu1c

]s[
1− T + Tu2c

]c−1
. (6e)

We compute Si which corresponds to the fraction of vertices that are of type i and that are in the extensive component:

S0 = w0

[
1−G0(u)

]
= w0 −

∑
s

P (s, 0)
[
1− T + Tu0s

]s
(7a)

S1 = w1

[
1−G1(u)

]
= w1 −

∑
s

P (s, 1)
[
1− T + Tu1c

]s [
1− T +

T (M1su1s +M2su2s)

M1s +M2s

]
(7b)

S2 = w2

[
1−G2(u)

]
= w2 −

∑
s

∑
c>1

P (s, c)
[
1− T + Tu1c

]s[
1− T + Tu2c

]c
. (7c)

The relative size of the extensive component is then S = S0 + S1 + S2.

4For example, u1s is the probability that a vertex of type 1 reached via one of its subcritical stub does not lead to the extensive component.
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Supp. Fig. 4: Co-authorship network from the arXiv preprint archive [9] for which w1 = 0.08, α1 = 1.02 and α2 = 0.99.

Extensive component formed by vertices of type 0

Equation (6a) is uncoupled from the other ones, and by applying the methods from Ref. [17], we find that some vertices

of type 0 will form an extensive component if

TM0s0s

M0s
> 1 . (8)

The relative size of this extensive component is obtained using Eq. (7a).

Can reaching a vertex of type 1 via its only critical stub lead to an extensive component?

According to the definition of the critical configuration model, reaching a vertex of type 1 via its only critical stub should

not lead to an extensive component. This is due to the fact that all remaining stubs of that vertex are subcritical, by

definition5. As a consequence, we expect u1c = 1 to be the only solution of Eq. (6c) for any P (c,m) coherent with the

connection rules of the Critical Configuration Model. Again, applying the methods from Ref. [17], we find that this will

be true whenever

TM1s

M1c
< 1 . (9)

This inequality will always be verified for any value of T if the vertices of type 1 reached via their critical stub always lead

to a finite tree of type-1 vertices, which is what we expect from the connection rules of the Critical Configuration Model.

If true, we know that M1s < w1 since trees have one less edge than they have vertices and that all edges in these trees

involve one subcritical stub. It then follows that

1 >
M1s

w1
=

M1s

M1c
>

TM1s

M1c
, (10)

thereby proving that u1c = 1 for any well behaved P (s, c).

5This is the reason why we set us = 1 in the main text.
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Supp. Fig. 5: Peer-to-peer Gnutella network [11] for which w1 = 0.45, α1 = 1.11 and α2 = 1.01.

Comparison with the approach in the main text

We now compare the multitype approach introduced above with the one presented in the main text.

Self-consistent equations

The self-consistent equation needed to be solved in the main text can be rewritten as

uc = 1− T + T

∑
s,c P (s, c)

(
c(1− δc,0)(1− δc,1)u

c−1
c + s(1− δc,0)u

c
c

)
∑

s,c P (s, c)
(
c(1− δc,0)(1− δc,1) + s(1− δc,0)

)
= 1− T + T

(∑
s sP (s, 1)uc

)
+
(∑

s

∑
c>1 sP (s, c)uc

c

)
+
(∑

s

∑
c>1 cP (s, c)uc−1

c

)
(∑

s sP (s, 1)
)
+

(∑
s

∑
c>1 sP (s, c)

)
+
(∑

s

∑
c>1 cP (s, c)

)
= 1− T + T

(
M1suc

)
+
(∑

s

∑
c>1 sP (s, c)uc

c

)
+

(∑
s

∑
c>1 cP (s, c)uc−1

c

)
M1s +M2s +M2c

, (11)

where uc is the probability that leaving any vertex via a critical stub will not lead to the extensive component.

In the multitype approach, the probability that leaving any vertex via a critical stub will not lead to the extensive

component is

ûc = 1− T + T
M1su1s +M2su2s +M2cu2c

M1s +M2s +M2c
, (12)
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Supp. Fig. 6: Structure of the Internet at the level of autonomous systems [6] for which w1 = 0.38, α1 = 1.12 and
α2 = 1.03.

which can be rewritten using Eqs. (6) as

ûc = 1− T + T
M1s

[
1− T + T M1su1s+M2su2s

M1s+M2s

]
M1s +M2s +M2c

+ T

∑
s

∑
c>1 sP (s, c)

[
1− T + T M2cu2c

M2c

]c
M1s +M2s +M2c

+ T

∑
s

∑
c>1 cP (s, c)

[
1− T + T M2cu2c

M2c

]c−1

M1s +M2s +M2c
. (13)

Since the terms in the three brackets of Eq. (13) are not equal to ûc, we conclude that it does not coincide with Eq. (11).

This comparison highlights the major difference between the two approaches: by identifying vertices with types, the

multitype approach keeps a memory about how a vertex has been reached and is therefore able to specify the ways

through which it can be left. The approach presented in the main text does not make such a distinction, and any critical

stub will be equally likely to not lead to the extensive component regardless of how the vertex has been reached.

The two approaches will coincide if there is no vertex of type 1 (i.e. w1 = 0), implying that P (s, c) = 0 for all s > 0 and

c > 0 and therefore that the first two terms of both Eqs. (11) and (13) vanish as well as M1s = M2s = 0.

They will also yield similar results if

α1 ≡ M1s +M2s +M2c

M2c
≃ 1 . (14)

This is confirmed in Supp. Figs. 3–6.
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Supp. Fig. 7: The Arabidopsis brain interactome [8] for which w1 = 0.40, α1 = 1.10 and α2 = 1.01.

Percolation threshold

A linear stability analysis of the solution uc = 1 of Eq. (11) yields the following condition for the existence of an extensive

component

T
M1s +M2s2c +M2c2c

M1s +M2s +M2c
> 1 . (15)

For the multitype approach, linear stability analysis of the solution (u1s, u2s, u2c) = (1, 1, 1) yields the following Jacobian

matrix

J =


TM1s

M1s +M2s

TM2s

M1s +M2s
0

0 0
TM2s2c

M2s

0 0
TM2c2c

M2c

 (16)

whose largest eigenvalue will be greater than one, thereby implying the existence of an extensive component, when

T
M2c2c

M2c
> 1 . (17)

From Eq. (17), we see that only vertices of type 2 (connected through their critical stubs) contribute to the emergence of

an extensive component in the multitype approach, whereas all vertices with at least 1 critical stubs (i.e. types 1 and 2)

play a part in the approach of the main text, as shown in Eq. (15).

Comparing Eqs. (15) and (17) also confirms our previous conclusion in that the two approaches will coincide if there is

no vertex of type 1 (i.e. w1 = 0), which implies that M1s = M2s = M2s2c = 0.
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They will also yield similar results if

α2 ≡ M2c

M2c2c

M1s +M2s2c +M2c2c

M1s +M2s +M2c
≃ 1 . (18)

This is confirmed in Supp. Figs. 3–6.
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