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Département de Physique, de Génie Physique, et d’Optique, Université Laval, Québec (Québec), Canada G1V 0A6.

Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and
diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With
the advent of large databases and efficient analysis algorithms, these processes can be better predicted and
controlled. In this study, we use different characteristics of network organization to identify the influential
spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious
choice of local measures, based either on the network’s connectivity at a microscopic scale or on its
community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness
centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that
highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which
local measure should govern immunization in a given scenario.

E
pidemics never occur randomly. Instead, they follow the structured pathways formed by the interactions
and connections of the host population1,2. The spreading processes relevant to our everyday life take place
on networks of all sorts: social (e.g. epidemics3,4), technological (e.g. computer viruses5,6) or ecological

(cascading extinctions in food webs7). With a network representation, these completely different processes can
be modelled as the propagation of a given agent on a set of nodes (the population) and links (the interactions).
Different systems imply networks with different organizations, just as different agents require different epidemic
models.

There has long been significant interest in identifying the influential spreaders in networks. Which nodes
should be the target of immunization efforts in order to optimally protect the network against epidemics?
Unfortunately, most studies feature two significant shortcomings. Firstly, the proposed methods are often based
on optimization or heuristic algorithms requiring nearly perfect information on a static system8,9; this is rarely the
case. Secondly, methods are usually tested on small numbers of real systems using a particular epidemic scen-
ario10,11; this limits the scope of possible outcomes.

We first present a numerical study, perhaps the largest of its kind to date, where we argue that, depending on
the nature of the network and of the disease, different immunization tactics have to be taken into consideration. In
so doing, we formalize the notion of node influence and illustrate how local knowledge around a particular node is
usually sufficient to estimate its role in an epidemic. We also show how, in certain cases, the influence of a node is
not necessarily dictated by its number of connections, but rather by its role in the network’s community structure
(see Fig. 1). Far from trivial, it follows that an efficient immunization strategy can be obtained solely from local
measures, which are easily estimated in practice and robust to noisy or incomplete information. We further
develop an analytical formalism ideally suited to test the effects of local immunization on realistic network
structures. Combining the insights gathered from the numerical study and this formalism, we finally formulate
a readily applicable approach which can easily be implemented in practice.

Results
Models and measures. There exist two standard models emulating diverse types of epidemics: the susceptible-
infectious-recovered (SIR) and susceptible-infectious-susceptible (SIS) dynamics. In both, an infectious node has a
given probability of eventually infecting each of its susceptible neighbors during its infectious period, which is
terminated by either death/immunity leading to the recovered state (SIR) or by returning to a susceptible state
(SIS). In the SIR dynamics, for a given transmission probability T, the quantity of interest is the mean fraction Rf of
recovered nodes once a disease, not subject to a stochastic extinction, has finished spreading (i.e. we focus on the
giant component12). Since each edge can only be followed once, this dynamics investigates how a population is
vulnerable to the invasion of a new pathogen. In the SIS dynamics, we are interested in the prevalence I* (fraction
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of infectious nodes) of the disease at equilibrium (equal amounts of
infections and recoveries) as a function of the ratio l 5 a/b of
infection rate a and recovery rate b. This particular dynamics
permits the study of how a given network structure can sustain an
already established epidemic.

Should a fraction e of the population be fully immunized, our
objective is to identify the nodes whose absence would minimize Rf

and I*. The epidemic influence of a node — that is the effect of its
removal on Rf and I* — depends mainly on its role in the organiza-
tion of the network. Hence to efficiently immunize a population, we
must first understand its underlying structure.

Network organization can be characterized on different scales,
each of which affect the dynamics of propagation. At the microscopic
level, the most significant feature is the degree of a node (its number
of links, noted k) which in turn defines the degree distribution of the
network. The significance of the high-degree nodes (the hubs) for
network structure in general13, for network robustness to random
failure14 and for epidemic control15 has long been recognized.

At the macroscopic level, the role of a node can be described by its
centrality, which may be defined in various ways. Frequently used in
the social sciences is the betweenness centrality (b), quantifying the
contributions of a given node to the shortest paths between every pair
of nodes in the network16. Arguably, this method should be among
the best estimate of a node’s epidemic influence as it directly mea-
sures its role in the different pathways between all other individuals17,
yet at a considerable computational cost. A simpler method, the k-
core (or k-shell) decomposition18,19, assigns nodes to different layers
(or coreness c) effectively defining the core and periphery of a net-
work (high and low c respectively). It has recently been shown that
coreness is well suited to identify nodes that are the most at risk of
being infected during the course of an epidemic20. In light of our
results, we will be able to discuss the distinction between a node’s
vulnerability to infection and its influence on the outcome of an
epidemic.

The mesoscopic scale has recently been the subject of considerable
attention. At this level of organization, the focus is on the redundancy
of connections forming dense clusters referred to as the community
structure of the network21,22. Nodes can be distinguished by their
membership number m, i.e., the number of communities to which
they belong. We will consider that two links of a given node are part

of one community if the neighbours they reach lead to significantly
overlapping neighbourhoods21. This definition is directly relevant to
epidemic dynamics as links within communities do not lead to new
potential infections. We call structural hubs the nodes connecting the
largest number of different communities. These nodes act as bridges
facilitating the propagation of the disease from one dense cluster to
another. Targeting structural hubs to hinder propagation in struc-
tured populations has been previously proposed and investigated10,11,
but has yet to be tested extensively.

Note that the microscopic and mesoscopic levels (as defined
above) are characterized by local measures in the sense that they
do not require a complete knowledge of the network, in contrast to
global measures like the betweenness centrality. Moreover, as we will
see, local measures are less sensitive to incomplete or incorrect
information. Adding, removing or rewiring a link only affects the
degree or membership of nodes directly in the neighbourhood of the
modification; whereas the same alterations can potentially affect
the centrality of nodes anywhere in the network through cascading
effects. Furthermore, even if community detection often requires the
tuning of a global resolution parameter, we will see that this
additional step does not affect the identification of structural hubs,
meaning that local information is sufficient to accurately determine a
node’s memberships.

In our numerical simulations we will have a perfect knowledge of
static networks. This will allow us to use global measures as a ref-
erence to test the efficiency of local measures best suited in practice.
We therefore ask without discrimination: which of the degree k, the
coreness c, the betweenness centrality b or the membership number
m is the best identifier of the most influential nodes on the outcome
of an epidemic? To answer this question, we have simulated SIR and
SIS dynamics with Monte Carlo calculations on 17 real-world net-
works. In each case, a fraction e of the nodes was removed in decreas-
ing order of the nodes’ score for each of the four different measures.
By comparing their efficiency to reduce Rf or I* as a function of e, we
are able to establish which measure is best suited for a given scenario
characterized by a network structure, a propagation dynamics and a
disease transmissibility (i.e. probability of transmission).

Case study: a data exchange network. We first illustrate our
methods using the network of users of the Pretty-Good-Privacy

Figure 1 | Protein interactions of S. cerevisiae (subset)22. The three black nodes correspond to the ones with the highest degree, and the three red ones

have the highest membership number. In this particular example, it is readily seen that the latter are structurally more influent.

www.nature.com/scientificreports
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algorithm for secure information interchange (hereafter, the PGP
network)23, which could be the host of the propagation of
computer viruses, rumors or viral marketing campaigns. Results
for the 16 other networks are presented and discussed in the next
section as well as in the Supporting Information (SI) document.

Communities in the network are extracted with the link commun-
ity algorithm of Ahn et al.21. This algorithm groups links — and
therefore the nodes they join — into communities based on the
overlap of their respective neighbouring nodes. It is this overlap that
reduces the number of new potential infections in a community
structure, as opposed to a random network. This method thus reflects
our understanding of how communities affect disease propagation.
While it may not directly detect the social groups or functional
modules of a network, it identifies significant clusters of redundant
links. This redundancy or overlap is quantified through a Jaccard
coefficient, and two links are grouped into the same community
when their coefficient exceeds a certain threshold. The threshold
value acts as a resolution, enabling to look at different levels of
organization. As suggested21, the value of the threshold is chosen
to maximize the average density r of the communities (see
Methods). As this choice may seem arbitrary, Fig. 2 investigates
the similarity between the nodes with the highest membership num-
bers, for different thresholds. It suggests that the membership num-
ber is fairly robust around the threshold. Moreover, Fig. 2 also
demonstrates that the effect of the removal of the structural hubs

on a SIS epidemics is very robust to the choice of the threshold. Thus,
we will henceforth use the membership numbers obtained with the
threshold value corresponding to the highest community density.

The differences, if any, between the efficiency of the different
methods are due to the immunized nodes not being the same.
Figure 3 (top) investigates the correlations between the different
properties (k, b, c and m) of each node. Perhaps the most important
result here is that nodes with a high membership number may have
relatively small degree, coreness and betweenness centrality. Hence,
we expect the immunizing method based on community structure to
have a different influence on the outcome of epidemics. Figure 3
(bottom) shows the consistensy (or lack thereof) of a given measure,
depending on the quality of the available data. The robustness of local
(micro and meso) measures is of obvious practical advantage. Both
robustness and correlations are further investigated in the SI.

To study various epidemic scenarios, we consider both SIS and SIR
dynamics (which may behave quite differently) with different values
of the transmission probability (l and T for SIS and SIR, respect-
ively). In fact, each network features an epidemic threshold, i.e. critical
values lc

24 and Tc
25, below which I* and Rf vanish to zero in an

equivalent infinite network ensemble. As we will show, the observed
behavior can differ significantly depending whether or not l and T
are close to their critical value.

Figure 4 presents results of different immunization methods
against SIS dynamics for different values of l. On the top figure,
where l is near lc, the most successful method of intervention is
to target nodes according to their degree. At low transmissibility, the
disease follows only a very small fraction of all links. The shortest
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paths are seldom used and the poor performance of betweenness
centrality follows. Moreover, the disease will not be affected by the
community structure, because even in dense neighbourhoods, most
links will not be travelled. We then say that the disease, unaffected by
link clustering, follows a tree-like structure (without loops), where
community memberships are insignificant. It is therefore better to
simply remove as many links as possible.

As l increases beyond lc, we see that immunization based on
membership numbers quickly outperforms the other methods. As
more links are travelled, the disease is more likely to follow super-
fluous links in already infected communities. Hubs sharing their
many links within few communities are therefore not as efficient
in causing secondary infections as one might expect. Similarly,
targeting through betweenness centrality also performs better with
higher l, albeit not as well as membership-targeting in this case. For
l? lc, immunization based on membership numbers (local) and on
betweenness centrality (global) converge toward similar efficiency,
significantly outperforming degree-based immunization.

Another interesting feature of our results is the poor performance
of immunization based on node coreness. A previous study had
clearly shown that epidemics mostly flourished within the core of
the network (see Fig. 5) because of its density20. Ironically, this den-
sity also implies redundancy. While the core nodes are highly at risk
of being infected, their removal has a limited effect because there exist
alternative paths within their neighbourhood: the core offers a per-
fect environment to the disease and is consequently robust to node

removal. It is therefore more effective to stop the disease from reach-
ing, or leaving, the core by removing the nodes bridging other neigh-
bourhoods (i.e. the structural hubs).

Similar conclusions are drawn for the SIR dynamics. As T moves
away from Tc, the most significant level of organisation shifts from
the degree (microscopic) to communities (mesoscopic) as member-
ship-based immunization progressively outperforms the other
strategies.

Results on networks of diverse nature. In this section, we highlight
different behaviours observed in social, technological and commu-
nication networks using 7 other datasets (full results for the 17
datasets are available in the SI): subset of the World Wide Web
(WWW)13, MathSciNet co-authorship network (MathSci)27, Wes-
tern States Power Grid of the United States (Power Grid)28,
Internet Movie Database since 2000 (IMDb)29, cond-mat arXiv co-
authorship network (arXiv)22, e-mail interchanges between members
of the University Rovira i Virgili (Email)30 and Gnutella peer-to-peer
network (Gnutella)31.

The results for the WWW, MathSci and IMDb networks fur-
ther support our previous conclusions, with the exception that
membership-based immunization performs surprisingly better than
the degree-based variant even near the epidemic threshold of the
network (see WWW and MathSci). The betweenness-centrality-
based immunization was not tested on IMDb because of computa-
tional constraints (its computation required over 800 hours with our
available ressources and a standard algorithm32), which illustrates a
significant limit of this measure. Approximations could have been
used33, but the intricate (and mostly unknown) relationship between
the efficiency of the measure and the accuracy of the approximation
would have only caused additional uncertainties.

The results presented for the Power Grid network illustrate a
fundamental difference between the SIS and the SIR dynamics: while
we are interested in the fraction of the network sustaining an estab-
lished epidemic in SIS, it is the fraction of nodes invaded by a new
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Figure 5 | k-core decomposition of the PGP network. Representation

(based on26) of the k-shells in the PGP network with nodes colored
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nodes are more likely to be infectious at any given time than green nodes as

the color is given by the square of the fraction of time spent in infectious

state. Note how the central nodes (the core) of the network are most at risk.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2171 | DOI: 10.1038/srep02171 4



disease that is relevant in SIR. In fact, the structure of the Power Grid,
a chain of small, easily disconnected modules, enhances the qualitat-
ive discrepancy between the epidemic influence of nodes subjected to
these two dynamics. For the SIS dynamics, the membership-based
intervention is the most efficient because it weakens all modules,
limiting the prevalence of the disease. In distinction, targeting
through betweenness centrality merely separates the modules, so that
they indiviually remain infected. For the SIR dynamics, separating
the modules is the best approach as it directly stops the infection
from spreading; while weakened – but connected – modules still
provide pathways. This effect is a direct consequence of the particular
structure of the Power Grid and is insignificant on other networks.

Finally, the last set of results, on arXiv, Email and Gnutella, present
the effect of the community density r on the performance of mem-
bership-based immunization. For very small r, the paths within
communities do not qualitatively differ from the links bridging
neighborhoods in their effect on the disease propagation. This tar-
geting method is therefore expected to converge toward degree-based
immunization if m and k are strongly correlated. However, as most
tested networks had fairly dense communities, r $ 0.3, the relevance
of memberships should not be understated.

Investigation of the epidemic regimes transition. The results of the
previous sections suggest that local information (i.e., degree,
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membership) is often sufficient for a nearly optimal global
immunization. More precisely, we found these two methods to
outperform or to be as efficient as the betweenness centrality (the
global method used for comparison) in 62 of the 68 studied scenarios
(i.e., 17 networks / 2 dynamics / 2 transmissibility regimes). This
implies that membership (e.g., on PGP), degree (e.g., Gnutella) or
both (e.g. MathSci) lead to an immunization at least as efficient as
global methods while having the noteworthy advantage of requiring
much less information and of being less sensitive to incomplete
information. This section focuses on the conditions guiding the
choice between the degree-based or the membership-based
immunization strategy. In this respect, Figs. 4 and 6 provide a
useful hindsight: the membership-based strategy is more efficient
than the degree-based one when transmissibility is high and/or
when communities are dense. To further our understanding and
test this hypothesis, we introduce a random network model
featuring a community structure, and exactly solve its final state
(Rf) under SIR dynamics using generating functions.

Our model is a slightly modified version of the configuration
model12,34 where nodes are connected either through single links or
through motifs (see Fig. 7 for an example). Motifs are used to simu-
late the effect of a community structure, that is the redundancy of the
neighbourhoods of nodes. Our motifs are composed of M nodes, all
connected to each other, and a node belongs to i motifs and has j
single links with probability p(i,j). This node therefore has a degree
(k) equal to (M 2 1)i 1 j and a membership (m) equal to i 1 j.
Networks are generated using a stub pairing scheme: a node belong-
ing to i motifs and having j single links has i ‘‘motif stubs’’ and j ‘‘link
stubs’’. Groups and single links are then formed by randomly choos-
ing M motif stubs and 2 link stubs, respectively, and then by linking
the corresponding nodes to one another. This last step is repeated
until none of the motif and link stubs remains. The distribution

p i, jð Þf gi,j[N therefore defines a maximally random network
ensemble, and the results obtained are averaged over this ensemble.

Extending previous work35, we compute the expected value of Rf

for the network ensemble just defined where nodes and links are
randomly removed to simulate immunization and disease transmis-
sion (SIR dynamics), respectively. Full details are given in the SI.
Using typical values for {p(i,j)}, our model illustrates and confirms
our hypothesis by clearly showing in Fig. 8a transition of efficiency
between the degree-based and the membership-based immunization
strategy. Initially less efficient when the transmissibility is low (i.e.,
higher threshold, lower value of Rf), membership progressively out-
performs degree as the transmissibility increases. As mentionned
above, for lower values of T, the best option is therefore to immunize
the hubs (high k) to shift the degree distribution towards lower
degrees. For higher values of T, targeting structural hubs (high m)
that act as bridges between ‘‘independent’’ neighbourhoods leads to a

more efficient immunization as it reduces the number of paths
between different regions of the network. Note that we do not expli-
citly model the effect of community density. This could have been
done by letting links exist independently with a given probability g.
This is however identical to letting the disease propagate with prob-
ability gT. Thus, the value of T in Fig. 8 is related to the density of the
communities, and our conclusions can therefore be extended to the
cases of low/high community densities.

Discussion
One of the main contributions of this work is to offer a formal
definition of the epidemic influence of nodes, i.e. the effect of its
removal on I* of Rf, which is open to diverse methods of approxi-
mation. Our results confirm that standard measures such as the
degree or betweenness centrality are not always the best indicators
of a node’s influence. Moreover, we have highlighted that the core-
ness, which has recently been proposed as an indicator of nodes’
influence20, offers poor performances. This has brought us to distin-
guish between individual risk and global influence. We have also
illustrated how a universal approach is still wanting, since different
networks and different diseases require different methods of inter-
vention.

Consequently, the fact that the numbers of links and/or com-
munities to which a node belongs are excellent measure of its epi-
demic influence — at times better, at times equivalent, but never
much worse than global centrality measures — is a particularly
important result. The fact that they both are local measures is espe-
cially relevant considering that we rarely have access to the exact
network structure of a system, either because it is simply too large
(WWW), too dynamic (email networks) or because the links them-
selves are ill-defined (social networks). Not only are local measures
computable from a limited subset of a network (which is often the
only available information), but a coarse-grained measure like mem-
bership is even more interesting as it is easier to estimate than a
node’s actual degree. For instance, consider how much simpler it is
to enumerate your social groups (work, family, etc.) than the totality
of your acquaintances.

Finally, the existence of a transition between two epidemic regimes
with different characteristic scales may well be the single most
important conclusion of this work. In the first regime, for low trans-
missibility and sparse communities, the microscopic structural

Figure 7 | Synthetic networks with tunable community structure.
Orange links belong to motifs of size M 5 4, and single links are shown in

blue. The degree k and membership m of a few selected nodes are indicated.

They belong to i 5 (k 2 m)/(M 2 2) motifs and have j 5 [(M 2 1)m 2 k]/

(M 2 2) single links.
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features (i.e. node connectivity or degree) offer the most relevant
information; while for higher transmissibility and denser communit-
ies, mesoscopic features (i.e node communities or membership)
appear more relevant. We expect to see an equivalent transition
between any pair of measures which oppose the micro and meso
scales (e.g. different range-limited measures of centrality36).

Based on our empirical and analytical results, we thus propose a
simple procedure on how to judge which local measure can be
expected to yield the best results in a given situation. From the
available subset of a given network:

1. Obtain the degree distribution to estimate the transmissibility
of the disease in relation to the epidemic threshold lc

24 or Tc
25.

2. If easily transmissible (l ? lc or T ? Tc), evaluate the net-
work’s community structure; otherwise, go to 4.

3. If the community density is high (r *w 0:3), immunize nodes
according to their memberships; otherwise, go to 4.

4. For a transmissibility near the epidemic threshold, or for sparse
communities (low r), immunize according to the degree of the
nodes.

The analytical and numerical frameworks used in this work are
expected to guide immunization efforts toward simpler, more precise
and efficient strategies. Likewise, the introduction of a node influence
classification scheme opens a new avenue for finding better local
estimates of a node’s role in the global state of its system.

Methods
Betweenness centrality. For all pairs (a,b) of nodes excluding i, list the na,b shortest
paths between a and b. Let na,b(i) be the number of these paths containing i. The
betweenness centrality bi of node i is then given by:

bi~
X

a,bð Þ

na,b ið Þ
na,b

: ð1Þ

Coreness. The coreness of node i is the highest integer ci such that the node is part of
the set of all nodes with at least ci links within the set.

Community detection. Two links, eij and eik, from a given node i, are said to belong to
the same community if their Jaccard coefficient J(eij,eik) (similarity measure) is above
a given threshold Jc:

J eij, eik
� �

~
nz jð Þ\ nz kð Þ
nz jð Þ| nz kð ÞwJc, ð2Þ

where n1(u) is the set containing the neighbors of u including u.

Community density. The density ri of a community i of ni . 2 nodes and di links is
the proportion of the possible redundant links that do exist; i.e., the fraction of
existing links excluding the minimal ni – 1 links that are needed for this community to
be connected:

ri~
di{ ni{1ð Þ

ni ni{1ð Þ
2

{ ni{1ð Þ
: ð3Þ

The community density r is then calculated according to

r~
1
D

X

i

diri , ð4Þ

where D is the total number of links not belonging to single link communities, for
which ri 5 021.

Immunization. To perform the immunization of a fraction e of the network
according to a certain measure C, we remove the eN nodes with the highest C. When a
choice must be made (nodes with equal C), all decisions are taken randomly and
individually for each simulated epidemics.

Monte Carlo simulations. To investigate the fraction of a network which can sustain
an epidemics, SIS simulations start with all nodes in an infectious state and are then
relaxed until an equilibrium is reached. To investigate the mean fraction of a network
which a disease can invade, SIR simulations start with a single randomly chosen
infectious node and run until there are no more infectious nodes. Results shown in the
figures are obtained by averaging over the outcome of several numerical simulations
until the minimal possible standard deviation (limited by network structure and finite
size) is obtained. For the SIR dynamics, only the simulations leading to largescale

epidemics (at least 1% of the nodes) were considered. The complete procedure is given
in the SI.
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17. Barthélemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B
38, 163–168 (2004).
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1 Supplementary discussions on methods

Local vs global measures

We differentiate between these two types of measures by the information required to compute them.
If this information (per node) is independent of total system size, the measure is considered local;
whereas a global measure requires information scaling with system size (often a complete description).
For the four properties studied in this paper, we thus consider that:

1. degree is a local measure, as only the number of neighbours of a node is required;
2. membership is a local measure, as the chosen algorithm only requires the neighbourhood of one

given node and that of its neighbours to estimate its membership number;
3. coreness is a global measure, as a node’s coreness depends on the coreness of its neighbours

which in turn depend on the coreness of their neighbours and so on;
4. betweenness centrality is a global measure, since it is calculated by considering the shortest

paths between a given node and all of the other nodes in the network.

For obvious reasons, local measures are less sensitive to incomplete or incorrect information. Adding,
removing or rewiring a link only affects the degree or membership of nodes directly in the neighbour-
hood of the modification; whereas the same alterations can potentially affect the coreness or between-
ness centrality of nodes anywhere in the network through cascading effects. Consequently, measures
based on shorter-range information are always more robust to missing information, and sometimes
quite significantly, as seen on Suppl. Fig. 1.
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Supplementary Figure 1: Robustness of measured from the micro (degree k), meso (memberships m) and macro
(betweenness centrality b) scales when information on the network is removed. The robustness is here measured
by comparing (with a Jaccard coefficient) the ensemble of nodes identified as being in the top 10% of nodes
when a certain fraction of links are randomly removed (horizontal axis) as opposed to the ensemble obtained by
considering the complete data.

Community detection

As mentioned above the link clustering algorithm of Ahn et al. was chosen in part because it can per-
form well (and at times even better) using local information instead of the entire network.1 While we
always partitioned the network globally, by setting a resolution threshold, the identification of struc-
tural hubs is very robust to this global threshold (see Suppl. Fig. 2). More importantly, this algorithm
groups links stemming from a given node in a community based on the similarity of the two neigh-
bourhoods reached through them. Hence, it evaluates the redundancy in second neighbourhoods (how
many of my second neighbours are neighbours of more than one of my neighbours?). This redun-
dancy (or overlap) can then serve as an appropriate measure to gauge the major impact of community
structure on an epidemic process, namely the loss of potential new infections due to clustering. The
link clustering algorithm therefore provides a well-defined method to quantify this loss.

1Y.-Y. Ahn, J. P. Bagrow, & S. Lehmann, Link communities reveal multiscale complexity in networks, Nature, vol. 466,
p.761-764, 2010. See also the corresponding Supplementary Information.
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Supplementary Figure 2: Robustness of our ability to identify structural hubs (1% of nodes with the most
memberships) as the global resolution varies (the final partition is chosen to maximize the community density
shown at the bottom). The color map represents the Jaccard coefficient, i.e. the similarity of ensembles, as
measured between the structural hubs identified with two different resolution parameter. These ensembles are
always very similar when avoiding extreme resolutions (e.g. low density). Note that in the color map, yellow
corresponds to a Jaccard coefficient of 0.6 which implies that 75% of the same structural hubs were found by
both partitions.

Supplementary simulation details

SIS. All nodes are initially infectious and we relax the system by iterating a discrete time propaga-
tion simulation using time step ∆t chosen such that α∆t and β∆t are less than 10−3:

i. at each ∆t, every susceptible neighbour S of every infectious individual I is infected with prob-
ability α∆t;

ii. at each ∆t every infectious individual I recovers with probability β∆t;

the steady-state is averaged over multiple independent simulations to minimize the standard deviation
(due to network structure and finite size).

SIR. A single node is randomly infected and the following stochastic process is iterated until no
infectious nodes remain:

i. I nodes infect each of their S neighbours with probability T and then recover.

The final state, considering only epidemics larger than 1% of the system size, is averaged over multiple
independent simulations to minimize the standard deviation (due to network structure and finite size).
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2 Theoretical modelling

The conclusion drawn in the main text were validated using synthetic networks. In this Section,
we present how these synthetic networks are generated. Furthermore, we describe the mathematical
framework used to calculate the final outcome of the SIR dynamics on these networks. Finally, we
give the parameters used for the main results.

Synthetic networks

The synthetic networks considered are a clustered and multitype generalisation of the Configuration
Model.2 In these networks, nodes are connected either through single links or through motifs (see
Fig. 7 in the main text for an example). Motifs are composed of M nodes which are all connected to
one another, and a node belongs to i motifs and has j single links with probability p(i, j). This node
therefore has a degree (k) equal to (M−1)i+ j and a membership (m) equal to i+ j.

Networks are generated using a stub pairing scheme: a node belonging to i motifs and having
j single links has i “motif stubs” and j “link stubs”. Groups and single links are then formed by
randomly choosing M motif stubs and 2 link stubs, respectively, and then by linking the corresponding
nodes to one another. This last step is repeated until none of the motif and link stubs remain. The
distribution {p(i, j)}i, j∈N therefore defines a random network ensemble, and the results obtained in this
Section are averaged over this ensemble.

Mathematical formalism

As there exists a mapping—under simple assumptions—between the SIR dynamics and bond percola-
tion on networks3,4. To calculate the outcome of the SIR dynamics on the networks just described, we
use a previously published formalism2 in which we add the possibility for nodes to exist with a given
probability (i.e., site percolation) to simulate immunization strategies. We only give a short outline
of this theoretical model as a general and more formal description will be the subject of a subsequent
publication.

For each pair (i, j) such that p(i, j) , 0 we assign a node type denoted by {i, j} (the set of such
pairs is notedM). As the pair (i, j) is the only information available about the nodes, assigning one
node type per pair allows us to simulate very detailed immunization strategies. Indeed, we define
q{i, j} as the probability for a type-{i, j} node to be immunized; the simulated immunization strategy
is therefore encoded in the set of probabilities {q{i, j}}{i, j}∈M. Also, as explained in the main text, the
infectious agent propagates from an infected node to a susceptible neighbour with probability T . From
a percolation point of view, 1 − q{i, j} is the occupation probability of type-{i, j} sites (nodes) and T is
the occupation probability of bonds (links).

Solving site/bond percolation in motifs

The mathematical formalism that we have developed relies on probability generating functions (PGFs)
and therefore implicitly requires the networks under consideration to have a tree-like structure. As the

2A. Allard, L. Hébert-Dufresne, P.-A. Noël, V. Marceau, and L. J. Dubé (2012). Bond percolation on a class of correlated
and clustered random graphs. J. Phys. A, 45(40):405005.

3M. E. J. Newman (2002). Spread of epidemic disease on networks. Phys. Rev. E, 66(1):016128.
4E. Kenah and J. Robins (2007). Second look at the spread of epidemics on networks. Phys. Rev. E, 76(3):1-12.

4
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networks we consider contain motifs, which clearly do not comply with that assumption, we need to
solve the bond and site percolation within motifs beforehand.

As previously shown5, the bond percolation outcome—the distribution of the number of nodes
that can be reached by following links from an initial node—can be exactly obtained by iterating a set
of simple equations. We denote n the |M|-tuple whose elements6 n{i, j} correspond to the number of
nodes of each type (i.e., there are n{i, j} type-{i, j} nodes). For the remaining, each boldfaced variable
will correspond to such |M|-tuple.

Let us define Q{i, j}(l|n) as the probability to find a component of l nodes in a motif of size (and
composition) n from an initial type-{i, j} node. Although nodes are initially all connected to one
another in motifs, we are interested in the number of nodes (and their type) that can be reached from
an initial node when links are followed with a probability T (bond percolation). Following previous
work5, Q{i, j}(l|n) is obtained by iterating

Q{i, j}(l|n) = Q{i, j}(l|l)
∏

{i′, j′}∈M

(
n{i′, j′} − δii′δ j j′

l{i′, j′} − δii′δ j j′

) ∏
{i′′, j′′}∈M

(1 − T )n{i′ , j′}(n{i′′ , j′′}−l{i′′ , j′′}) (2.1a)

Q{i, j}(l|l) = 1 −
∑
m<l

Q{i, j}(m|l) (2.1b)

from the initial condition Q{i, j}(δ{i, j}|δ{i, j}), where δi j is the Kronecker delta, and where δ{i, j} is an
|M|-tuple whose elements are all equal to 0 except for the {i, j}-th one that is equal to one. The sum
in Eq. (2.1b) is over all m such that m{i, j} ≤ l{i, j} for every node type {i, j} but with the additional
constraint that m , l. The initial condition simply states that the probability of finding a component
of one type-{i, j} node from a type-{i, j} node in a motif containing only one type-{i, j} node is one (the
initial node is always included in the size of the component). Then, Eqs. (2.1) iteratively increase the
size of the motif and compute the size distribution along the way until the complete distribution for a
motif of the desired size (and composition) is obtained.

Should we be interested in studying bond percolation on motifs solely, we would keep the dis-
tribution {Q{i, j}(l|n)} for a given size n, and discard the distributions for motifs of intermediate size
obtained while iterating Eqs. (2.1). These intermediate distributions can however be used to exactly
predict the distribution of the number of nodes that can be reached by following links from an initial
node in motifs where links and nodes exist with given probabilities (bond and site percolation). In-
deed, as each node exists independently with a given probability, the probability for a motif of original
size n to be of size m after the random removal of its nodes is simply

W{i, j}(m|n) =
∏

{i′, j′}∈M

(
n{i′, j′} − δii′δ j j′

m{i′, j′} − δii′δ j j′

)[
1 − q{i′, j′}

]m{i′ , j′}−δii′δ j j′
[
q{i′, j′}

]n{i′ , j′}−m{i′ , j′}
, (2.2)

where we assume that the initial type-{i, j} exists. Then, the probability for a type-{i, j} node to lead
to a component of size l in a motif of original size n but whose links and nodes have been randomly
removed is simply

P{i, j}(l|n) =

n∑
m=δ{i, j}

Q{i, j}(l|m)W{i, j}(m|n) . (2.3)

5A. Allard, L. Hébert-Dufresne, P.-A. Noël, V. Marceau, and L. J. Dubé (2012). Exact solution of bond percolation on
small arbitrary graphs. EPL, 98(1):16001.

6|M| is the number of elements (i.e., the cardinality) of the setM, hence the number of node types.
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The site and bond percolation can therefore be exactly solved for motifs by iterating Eqs. (2.1)–(2.3).
As expected, if applied to the simplest motifs, i.e. links, the type-{i, j} node at the other end of the
link will be reached with probability T (1−q{i, j}) and will not be reached with probability 1−T (1−q{i, j}).

As motifs and single links are built by randomly matching stubs, the probability for a type-{i, j}
node to appear in a motif [a link] is proportional to [ip(i, j)] [ jp(i, j)]. The probability for a motif to
be composed by n nodes is given by the multinomial distribution

R(m)(n) =
M![∑

{i, j}∈M ip(i, j)
]M

∏
{i, j}∈M

[
ip(i, j)

]n{i, j}

n{i, j}!
. (2.4a)

The same applies for the composition of links

R(l)(n) =
2![∑

{i, j}∈M jp(i, j)
]2

∏
{i, j}∈M

[
jp(i, j)

]n{i, j}

n{i, j}!
. (2.4b)

Finally, for the purpose of calculating the outcome of the bond and site percolation on the synthetic
networks, let us define the two following generating functions:

θ(m)
{i, j}

(
x
)

=
∑

n

n{i, j}R(m)(n)∑
n′ n′
{i, j}R

(m)(n′)

 n∑
l=δ{i, j}

P(m)
{i, j}(l|n)

∏
{i′, j′}∈M

[
x{i′, j′}

]l{i′ , j′}−δii′δ j j′

 (2.5a)

θ(l)
{i, j}

(
y
)

=
∑

n

n{i, j}R(l)(n)∑
n′ n′
{i, j}R

(l)(n′)

 n∑
l=δ{i, j}

P(l)
{i, j}(l|n)

∏
{i′, j′}∈M

[
y{i′, j′}

]l{i′ , j′}−δii′δ j j′

 (2.5b)

where the superscript “m” (resp. “l”) indicate that the quantities have been solved for motifs (resp.
links). In other words, the function θ(m)

{i, j}
(
x
)

generates the probability distribution for the number
of nodes of each type that can be reached from a type-{i, j} node in a random motif [i.e., whose
composition is averaged over R(m)(n)]. Specifically, the coefficient in front of xs

{i′, j′} in Eq. (2.5a) is
the probability of reaching s type-{i′, j′} nodes from a type-{i, j} node in a random motif. The same
applies to θ(l)

{i, j}
(
y
)
.

Calculating the average fate of an outbreak

We are now in a position to solve the bond and site percolation on the synthetic networks defined pre-
viously. For the purpose of the present study, we are interested in the quantity Rf: the relative size of
the extensive (giant) component. To highlight the nontrivial effect of immunization7, Rf is expressed
in terms of the fraction of the existing nodes (i.e., 1 − ε) that are part of the giant component.

It is convenient to introduce the following function

g{i, j}
(
x, y

)
=

[
θ(m)
{i, j}

(
x
)]i[

θ(l)
{i, j}

(
y
)] j

(2.6)

generating the distribution of the number of nodes of each type that are in the immediate neighbour-
hood of a type-{i, j} node. The immediate neighbourhood refers to the nodes to which the type-{i, j}

7The relative size of the giant component cannot exceed 1 − ε on networks for which a fraction ε of the nodes has been
removed. This reduction in size obviously occurs during any immunization strategy and, for comparison purposes, must be
taken into account.
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node is connected either via its single links or via its motifs. Similarly, we define

f (m)
{i, j}

(
x, y

)
=

[
θ(m)
{i, j}

(
x
)]i−1[

θ(l)
{i, j}

(
y
)] j

(2.7a)

f (l)
{i, j}

(
x, y

)
=

[
θ(m)
{i, j}

(
x
)]i[

θ(l)
{i, j}

(
y
)] j−1

(2.7b)

generating the distribution of the number of nodes of each type that are in the immediate neighbour-
hood of a type-{i, j} node that has been reached by either one of its single links or one of the motifs it
is a part of (if applicable). In other words, these functions generate the excess degree distribution.

To calculate Rf , let us define a{i, j} as the probability that a link to a type-{i, j} node does not lead
to the giant component. Similarly, we define b{i, j} as the probability that a type-{i, j} node reached
through a motif does not lead to the giant component. Due to the effective tree-like structure of the
networks—recall that the outcome of percolation on the motifs has already been solved—a{i, j} and
b{i, j} must satisfy the following self-consistency relations

a{i, j} = f (m)
{i, j}

(
a, b

)
(2.8a)

b{i, j} = f (l)
{i, j}

(
a, b

)
. (2.8b)

Put simply, these equations state that if a type-{i, j} node reached from either a link or a motif does
not lead to the giant component, then neither should the nodes that can be reached from it. The
probability that a type-{i, j} node is part of the giant component is then 1− g{i, j}

(
a, b

)
. The probability

that a randomly existing node is part of the giant component—which corresponds to its size as well—is
therefore

Rf =
∑
{i, j}∈M

(1 − q{i, j})p(i, j)
[
1 − g{i, j}

(
a, b

)]∑
{i′, j′}∈M(1 − q{i′, j′})p(i′, j′)

. (2.9)

The theoretical predictions (lines) on Fig. 8 in the main text were obtained by solving Eqs. (2.1)–(2.9)
for various values of T and {q{i, j}}{i, j}∈M. Comparison with results obtained from numerical simulations
(symbols) confirms the validity of our theoretical model.

Parameters used for theoretical calculations

Table 1 shows the distribution {p(i, j)}i, j∈N used for the synthetic networks considered in the main text.
It also gives the degree (k{i, j}) and the membership (m{i, j}) of each node type {i, j} ∈ M. Motifs were
composed of M = 4 nodes, and numerical simulation results (symbols on Fig. 8) were averaged over
5× 105 realisations of networks of 2.5× 105 nodes. For node types with k{i, j} > 2, we let sets of M − 1
links to either be part of cliques of M nodes or be single links in order to avoid unintended degree
correlations8. For a given fraction ε of the nodes to immunize, we have∑

{i′, j′}∈M

q{i′, j′}p(i′, j′) = ε . (2.10)

The probabilities q{i, j} are chosen to satisfy this condition and in decreasing order of degree or mem-
bership.

8I.Z. Kiss & D.M. Green (2008), Comment on “Properties of highly clustered networks”, Phys. Rev. E, 78:048101.
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HÉBERT-DUFRESNE et al. (2013) Supplementary Information

{i, j} p(i, j) k{i, j} m{i, j}
{0, 1} 0.43930 1 1
{0, 2} 0.13179 2 2
{0, 9} 0.00712 9 9
{1, 3} 0.25831 6 4
{1, 6} 0.04982 9 7
{2, 3} 0.02325 9 5
{3, 0} 0.09041 9 3

Supplementary Table 1: Distribution {p(i, j)}i, j∈N used for the synthetic networks
discussed in the main text. The degree and the membership of each node type is
computed according to k{i, j} = (M − 1)i + j and m{i, j} = i + j, respectively, with
M = 4.

3 Introduction to the supplementary results

The last sections of this Supplementary Information present a more complete view of the results
obtained on empirical networks and are structured as follows. Each section covers one of the 17
datasets used in the study. Firstly, a brief discussion on the nature of each network is given, along
with:

• the number of nodes (N), of links (L) and the degree distribution (k links per node);

• the maximal community density ρ and corresponding Jaccard threshold Jρ.

• the maximal values of degree k, coreness c, betweenness centrality b and memberships m.

Secondly, correlations between degree, betweenness centrality, coreness and memberships are quan-
tified using Spearman’s rank correlation coefficient (defined below). We leave to the reader to ob-
serve how, given the correlation coefficient between memberships ranking and degree ranking, along
with the mean community density, one can somewhat predict if the membership-based immunization
will be more or less efficient than the degree-based version. Finally, the results of all immunization
methods (random or on the four measures) are presented for SIS and SIR dynamics for a virulence
(probability of disease transmission) close and far from the network’s epidemic threshold.

Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient quantifies the statistical dependence of two different or-
derings of the same set of items (nodes) on a scale of −1 (perfectly anti-correlated) to 1 (perfectly
correlated).9

Consider xi to be the rank of item i according to measure X, and yi to be the rank of the same
item according to a different measure Y . If for example, 10 items have the same score according to
X and would otherwise be ranked from x j to x j+9, they are all given the rank

[∑9
k=0 x j+k

]
/10. The

Spearman’s rank correlation coefficient σ(X,Y) is then given by:

σ(X,Y) =

∑
i

(xi − x̄) (yi − ȳ)

 / ∑
i

(xi − x̄)2
∑

i

(yi − ȳ)2

1/2

,

where ū is the average rank according to measure U (the mean of {ui}).
9C. Spearman (1904), The proof and measurement of association between two things, Amer. J. Psychol., 15:72101.
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HÉBERT-DUFRESNE et al. (2013) Supplementary Information

4 arXiv co-authorship

The cond-mat arXiv database uses articles published at http://arxiv.org/archive/cond-mat between April
1998 and February 2004. In this network, an article written by n co-authors contributes to a link of
weight (n − 1) between every pair of authors. The unweighted network was obtained by deleting all
links with a weight under the selected threshold of 0.1.10

Supplementary Table 2: arXiv statistics

N L kmax cmax bmax mmax ρ

30561 125959 191 15 6.9e + 06 127 0.35

Supplementary Table 3: arXiv correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.7766 0.7717 0.6639 0.7461 0.9411 0.5388

Supplementary Figure 3: arXiv degree distribution
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Supplementary Figure 4: Intervention against epidemics on arXiv after different immunization: randomly (grey
squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue triangles)
or memberships (red diamonds).
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10Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of complex
networks in nature and society. Nature 435:814-818
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5 Brightkite online social network

Brightkite was a location-based online social network where users could “check in” to the physical
places they were visiting to connect with nearby friends. This datasets was obtained from a total of
4,491,143 check-ins over the period of Apr. 2008 - Oct. 2010.11

Supplementary Table 4: Brightkite statistics

N L kmax cmax bmax mmax ρ

58228 214078 1134 52 2e + 08 1118 0.55

Supplementary Table 5: Brightkite correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9845 0.8919 0.9477 0.8822 0.9659 0.7767

Supplementary Figure 5: Brightkite degree distribution
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Supplementary Figure 6: Intervention against epidemics on Brightkite after different immunization: randomly
(grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue
triangles) or memberships (red diamonds).
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11Cho, E., Myers, S.A. & Leskovec, J. (2011) Friendship and Mobility: User Movement in Location-Based Social Net-
works. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).
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6 University email exchange

Network of email communication between accounts from the University Rovira i Virgili.12

Supplementary Table 6: Email statistics

N L kmax cmax bmax mmax ρ

1134 5143 1080 8 6.1e + 05 929 0.13

Supplementary Table 7: Email correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9900 0.9474 0.9560 0.9447 0.9613 0.8831

Supplementary Figure 7: Email degree distribution
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Supplementary Figure 8: Intervention against epidemics on university email network after different immuniza-
tion: randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness
centrality (blue triangles) or memberships (red diamonds).

 0
 0.05
 0.1

 0.15
 0.2

 0.25

 0.001  0.01
Fraction of nodes removed

I*

Email, ρ = 0.13
SIS, λ = 0.10  0.3

 0.4
 0.5
 0.6
 0.7
 0.8

 0.001  0.01  0.1
Fraction of nodes removed

I*

Email, ρ = 0.13
SIS, λ = 1.00

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0.001  0.01  0.1
Fraction of nodes removed

Rf

Email, ρ = 0.13
SIR, T = 0.10

 0.7

 0.8

 0.9

 1

 0.001  0.01  0.1
Fraction of nodes removed

Rf

Email, ρ = 0.13
SIR, T = 0.75

12Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F. & Arenas, A. (2003) Self-similar community structure in a network
of human interactions. Phys. Rev. E 68:065103(R)
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7 Enron email exchange

Network of email interchanges between all different Enron email addresses built from a dataset of
around half million emails (made public by the Federal Energy Regulatory Commission).13

Supplementary Table 8: Enron statistics

N L kmax cmax bmax mmax ρ

36692 183831 1383 43 4.3e + 07 1306 0.61

Supplementary Table 9: Enron correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9325 0.7567 0.9173 0.7585 0.9839 0.6862

Supplementary Figure 9: Enron degree distribution
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Supplementary Figure 10: Intervention against epidemics on Enron email network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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13Klimmt, B. & Yang, Y. (2004) Introducing the Enron corpus. CEAS conference.
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HÉBERT-DUFRESNE et al. (2013) Supplementary Information

8 Gnutella peer-to-peer network

A snapshot of the Gnutella peer-to-peer network, where nodes are hosts and edges connections, from
August 30th 2002. The data is originally directed (files taken from one host to another), but was made
undirected for this work.14

Supplementary Table 10: Gnutella statistics

N L kmax cmax bmax mmax ρ

36682 88328 55 7 5.3e + 06 52 0.03

Supplementary Table 11: Gnutella correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9849 0.9848 0.9796 0.9925 0.9823 0.9743

Supplementary Figure 11: Gnutella degree distribution
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Supplementary Figure 12: Intervention against epidemics on Gnutella network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).

 0

 0.01

 0.02

 0.001  0.01
Fraction of nodes removed

I*

Gnutella, ρ = 0.03
SIS, λ = 0.10  0.5

 0.6
 0.7
 0.8
 0.9

 1

 0.001  0.01  0.1
Fraction of nodes removed

I*

Gnutella, ρ = 0.03
SIS, λ = 5.00

 0

 0.1

 0.2

 0.3

 0.001  0.01  0.1
Fraction of nodes removed

Rf

Gnutella, ρ = 0.03
SIR, T = 0.15  0.5

 0.6

 0.7

 0.8

 0.9

 0.001  0.01  0.1
Fraction of nodes removed

Rf

Gnutella, ρ = 0.03
SIR, T = 0.75

14Ripeanu, M., Foster, I. & Iamnitchi, A. (2002) Mapping the Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design. IEEE Internet Computing Journal 6:50-57

13
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9 Google weblinks

Directed network of hyperlinks between Google’s webpages (considered undirected for this study).15

Supplementary Table 12: Google statistics

N L kmax cmax bmax mmax ρ

15763 149456 11401 102 9.0e + 07 2883 0.49

Supplementary Table 13: Google correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.8862 0.7941 0.8401 0.7735 0.9723 0.6995

Supplementary Figure 13: Google degree distribution
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Supplementary Figure 14: Intervention against epidemics on Google network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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15Palla, G., Farkas, I.J, Pollner, P., Derényi, I. & Vicsek, T. (2007) Directed network modules. New. J. Phys. 9:186
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10 Gowalla social network

Gowalla is a location-based social networking website similar to Brightkite. This friendship network
is undirected and composed from a total of 6,442,890 check-ins over the period of Feb. 2009 - Oct.
2010.16

Supplementary Table 14: Gowalla statistics

N L kmax cmax bmax mmax ρ

196591 950327 14730 51 6.3e + 09 14600 0.54

Supplementary Table 15: Gowalla correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9792 0.8363 0.9514 0.8311 0.9724 0.7309

Supplementary Figure 15: Gowalla degree distribution
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Supplementary Figure 16: Intervention against epidemics on Gowalla network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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16Cho, E., Myers, S.A. & Leskovec, J. (2011) Friendship and Mobility: Friendship and Mobility: User Movement in
Location-Based Social Networks. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD).
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11 Internet autonomous systems

This dataset is a symmetrized snapshot of the structure of the Internet at the level of autonomous
systems, reconstructed from BGP tables posted at archive.routeviews.org. This snapshot was created
by Mark Newman from data for July 22nd 2006.17

Supplementary Table 16: Internet statistics

N L kmax cmax bmax mmax ρ

22963 48436 2390 25 3.8e + 07 1710 7e − 4

Supplementary Table 17: Internet correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9857 0.7933 0.9469 0.7807 0.9631 0.7079

Supplementary Figure 17: Internet degree distribution
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Supplementary Figure 18: Intervention against epidemics on Internet network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).

 0
 0.01
 0.02
 0.03
 0.04
 0.05

0.001 0.0025 0.005
Fraction of nodes removed

I*

Internet, ρ = 7e-4
SIS, λ = 0.10  0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0.001  0.01  0.1
Fraction of nodes removed

I*

Internet, ρ = 7e-4
SIS, λ = 1.00

 0
 0.1
 0.2
 0.3
 0.4

 0.001  0.01  0.1
Fraction of nodes removed

Rf

Internet, ρ = 7e-4
SIR, T = 0.20

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.001  0.01  0.1
Fraction of nodes removed

Rf

Internet, ρ = 7e-4
SIR, T = 0.75

17Hébert-Dufresne, L., Allard, A., Marceau, V., Noël, P.-A. & Dubé, L.J. (2011) Structural Preferential Attachment:
Network Organization beyond the Link. Phys. Rev. Lett. 107:158702
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12 Internet Movie Database

This dataset details the co-acting network of for movies released after December 31st 1999 as com-
piled by IMDb.1819

Supplementary Table 18: IMDb statistics

N L kmax cmax bmax mmax ρ

716463 7665259 4625 192 N/A 2152 0.52

Supplementary Table 19: IMDb correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.6830 N/A 0.6186 N/A 0.9813 N/A

Supplementary Figure 19: IMDb degree distribution
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Supplementary Figure 20: Intervention against epidemics on IMDb network after different immunization: ran-
domly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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18http://www.imdb.com/
19Hébert-Dufresne, L., Allard, A., Marceau, V., Noël, P.-A. & Dubé, L.J. (2011) Structural Preferential Attachment:

Network Organization beyond the Link. Phys. Rev. Lett. 107:158702
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13 MathSciNet co-authorship

Co-authorship network of MathSciNet before 2008.2021

Supplementary Table 20: MathSci statistics

N L kmax cmax bmax mmax ρ

391529 873775 496 24 1.9e + 09 485 0.40

Supplementary Table 21: MathSci correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.8645 0.8320 0.7749 0.7835 0.9465 0.6200

Supplementary Figure 21: MathSci degree distribution
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Supplementary Figure 22: Intervention against epidemics on MathSci network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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20http://www.ams.org/mathscinet/
21Palla, G., Farkas, I.J., Pollner, P., Derényi, I. & Vicsek, T. (2008) Fundamental statistical features and self-similar

properties of tagged networks. New J. Phys. 10:123026
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14 Myspace online social network

Friendships between the first 100,000 users encountered while crawling Myspace accounts from
September to October 2006 (excluding Tom Anderson, the cofounder of MySpace, which is connected
to everyone).2223

Supplementary Table 22: Myspace statistics

N L kmax cmax bmax mmax ρ

100000 841224 59108 78 2.6e + 09 59102 0.77

Supplementary Table 23: Myspace correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
1.0000 0.8667 0.9995 0.8667 0.9995 0.8662

Supplementary Figure 23: Myspace degree distribution
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Supplementary Figure 24: Intervention against epidemics on Myspace after different immunization: randomly
(grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue
triangles) or memberships (red diamonds).
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22http://www.myspace.com/
23Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007) Analysis of Topological Characteristics of Huge Online

Social Networking Services, Proc. of International World Wide Web Conference
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15 Pretty-Good-Privacy data exchange

Dataset describing the giant component in the network of users of the Pretty-Good-Privacy algorithm
for information exchange.24

Supplementary Table 24: PGP statistics

N L kmax cmax bmax mmax ρ

10680 24316 205 31 7.5e + 06 110 0.50

Supplementary Table 25: PGP correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.8862 0.8599 0.7256 0.7973 0.8973 0.5464

Supplementary Figure 25: PGP degree distribution
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Supplementary Figure 26: Intervention against epidemics on the PGP network after different immunization:
randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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24Boguñá, M., Pastor-Satorras, R., Dı́az-Guilera, A. & Arenas, A. (2004) Models of social networks based on social
distance attachment. Phys. Rev. E 70:056122
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HÉBERT-DUFRESNE et al. (2013) Supplementary Information

16 Power grid

The topology of the Western States Power Grid of the United States as compiled by Duncan Watts and
Steven Strogatz.25

Supplementary Table 26: Power grid statistics

N L kmax cmax bmax mmax ρ

4941 6594 19 5 3.5e + 06 18 0.49

Supplementary Table 27: Power grid correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9192 0.8605 0.6191 0.8042 0.7342 0.5788

Supplementary Figure 27: Power grid degree distribution
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Supplementary Figure 28: Intervention against epidemics on the power grid after different immunization: ran-
domly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality
(blue triangles) or memberships (red diamonds).
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25Watts, D.J. & Strogatz, S.H. (1998) Collective dynamics of small-world networks. Nature 393:440-442

21
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17 Protein interactions network

Protein-protein interactions (ProteinCore) in S. cerevisiae as listed by the Database of Interacting
Proteins.2627

Supplementary Table 28: ProteinCore statistics

N L kmax cmax bmax mmax ρ

2640 6600 111 8 4.0e + 05 71 0.32

Supplementary Table 29: ProteinCore correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.8538 0.9118 0.7702 0.8828 0.9543 0.7712

Supplementary Figure 29: ProteinCore degree distribution
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Supplementary Figure 30: Intervention against epidemics on the protein interactions network after different
immunization: randomly (grey squares) and based on coreness (green pentagons), degree (black circles), be-
tweenness centrality (blue triangles) or memberships (red diamonds).
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26http://dip.doe-mbi.ucla.edu/
27Palla, G., Derényi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of complex

networks in nature and society. Nature 435:814-818
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18 Slashdot online social network

Network of tagged relationships (friends or foes) in the community of the Slashdot news website in
November 2008.2829

Supplementary Table 30: Slashdot statistics

N L kmax cmax bmax mmax ρ

77360 469180 2539 54 1.2e + 08 2506 0.46

Supplementary Table 31: Slashdot correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9958 0.9373 0.9832 0.9358 0.9870 0.8855

Supplementary Figure 31: Slashdot degree distribution
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Supplementary Figure 32: Intervention against epidemics on Slashdot after different immunization: randomly
(grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue
triangles) or memberships (red diamonds).
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28http://slashdot.org/
29Leskovec, J., Lang, K., Dasgupta, A. & Mahoney, M. (2009) Community Structure in Large Networks: Natural Cluster

Sizes and the Absence of Large Well-Defined Clusters. Internet Mathematics 6:29-123
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19 Word association network

Word association graph (built by survey) obtained from the South Florida Free Association norms.3031

Supplementary Table 32: Word ass. statistics

N L kmax cmax bmax mmax ρ

7207 31784 218 7 1.2e + 06 137 0.16

Supplementary Table 33: Word ass. correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9698 0.9230 0.9110 0.9229 0.9281 0.8337

Supplementary Figure 33: Word ass. degree distribution
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Supplementary Figure 34: Intervention against epidemics on the word association graph after different immu-
nization: randomly (grey squares) and based on coreness (green pentagons), degree (black circles), betweenness
centrality (blue triangles) or memberships (red diamonds).
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30http://www.usf.edu/FreeAssociation/
31Palla, G., Derényi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of complex

networks in nature and society. Nature 435:814-818
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20 World Wide Web

Network of links between the webpages within nd.edu domain and considered undirected for this
study.32

Supplementary Table 34: WWW statistics

N L kmax cmax bmax mmax ρ

325729 1090108 10721 155 2.5e + 10 6993 0.86

Supplementary Table 35: WWW correlations

σ(k,m) σ(b,m) σ(c,m) σ(k, b) σ(k, c) σ(b, c)
0.9569 0.8683 0.9020 0.8665 0.9614 0.7905

Supplementary Figure 35: WWW degree distribution
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Supplementary Figure 36: Intervention against epidemics on the WWW after different immunization: randomly
(grey squares) and based on coreness (green pentagons), degree (black circles), betweenness centrality (blue
triangles) or memberships (red diamonds).
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32Barabási, A.-L. & Albert, R. (1999) Emergence of scaling in random networks. Science 286:509-512
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