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The COVID-19 pandemic brought to the public eye the role ma-
thematical models play in infectious disease epidemiology :

� generate forecast ;

� estimate the e�ectiveness of non-pharmaceutical interven-
tions (NPIs) ;

� understand the underlying factors in�uencing the spread of
the virus.

https://ici.radio-canada.ca/nouvelle/1763158/scientifiques-annee-2020-radio-canada-modelisateurs-pandemie
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/epidemiological-economic-research-data/mathematical-modelling.html
https://www.canada.ca/content/dam/phac-aspc/documents/services/diseases-maladies/coronavirus-disease-covid-19/epidemiological-economic-research-data/update-covid-19-canada-epidemiology-modelling-20220218-en.pdf
https://doi.org/10.1186/s12889-020-08671-z
https://www.telegraph.co.uk/news/2020/05/05/exclusive-government-scientist-neil-ferguson-resigns-breaking/
https://www.theguardian.com/science/2020/mar/25/coronavirus-exposes-the-problems-and-pitfalls-of-modelling
https://www.ledevoir.com/societe/sante/577379/voir-par-dela-le-sommet-de-la-courbe
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Background in mathematical modeling in epidemiology. . .
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Background in mathematical modeling in epidemiology. . .

. . . and then January 2020 came along.

https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.46234/ccdcw2020.017
https://doi.org/10.1002/jmv.25678
https://www.statnews.com/2020/01/05/cause-of-mysterious-pneumonia-cases-still-unknown-chinese-say/
https://www.bbc.com/news/world-asia-china-50984025
https://www.science.org/content/article/novel-human-virus-pneumonia-cases-linked-seafood-market-china-stir-concern
https://www.cbc.ca/news/health/pneumonia-china-coronavirus-possibility-1.5420520
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Outline :

1. Basic epidemiological models.

2. How COVID-19 challenges some assumptions made by “traditional” models.

3. Contact network epidemiology (CNE).

4. How COVID-19 allows CNE to shine, and what can we learn from it.

https://doi.org/10.1038/d41586-021-00460-x
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Basic epidemiological models
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Main epidemiological assumptions

� the disease results either in complete immunity or death (SIR)

� the disease is not fatal and conveys no immunity (SIS)

� all individuals are equally susceptible

Main structural assumptions

� the disease is transmitted in a closed population

� contacts occur according to the law of mass-action

� the population is large enough to justify a deterministic analysis

W. Ogilvy Kermack & A. G. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proc. R. Soc. Lond. A 115, 700–721 (1927)

W. Ogilvy Kermack & A. G. McKendrick, Contributions to the mathematical theory of epidemics. II. —The problem of endemicity, Proc. R. Soc. Lond. A 138, 55–83 (1932)

W. Ogilvy Kermack & A. G. McKendrick, Contributions to the mathematical theory of epidemics. III.—Further studies of the problem of endemicity, Proc. R. Soc. Lond. A 141, 94–122 (1933)

H. W. Hethcote, The Mathematics of Infectious Diseases, SIAM Rev. 42, 599–653 (2000)

https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1932.0171
https://doi.org/10.1098/rspa.1933.0106
https://doi.org/10.1137/S0036144500371907
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Basic epidemiological models
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Susceptible-Infected-Susceptible (SIS) dynamics

� the disease is not fatal and conveys no immunity

� S : fraction of the pop. susceptible to the disease
� I : fraction of the pop. infected by the disease

� susceptible and infected individuals come into contact at a
rate / SI (mass-action assumption)

dS

dt
= ��SI + ↵I

dI

dt
= �SI � ↵I

� a trajectory
I(t) =

I⇤

1� (1� I⇤/I(0))e(1�R0)↵t

settles to

I⇤ =

8
<

:
0 if R0 < 1

1� 1

R0
if R0 > 1

with R0 = �/↵ being the basic reproduction number (expected
number of secondary cases directly caused by one case in an
otherwise fully susceptible population)
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Basic epidemiological models
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Susceptible-Infected-Recovered (SIR) dynamics

� the disease results either in complete immunity or death

� S : fraction of the pop. susceptible to the disease
� I : fraction of the pop. infected by the disease
� R : fraction of the pop. having recovered from the disease

� susceptible and infected individuals come into contact at a
rate / SI (mass-action assumption)

dS

dt
= ��SI

dI

dt
= �SI � ↵I

dI

dt
= ↵I

� the fraction of the population who will be infected by the
disease eventually is a solution of

R(1) = 1� S(0)e�R0(R(1)�R(0)) ' 1� e�R0R(1)

with R0 = �/↵ being the basic reproduction number

� there will be an epidemic wave if R0 > 1, otherwise the out-
break will die out

� there is herd immunity if a fraction 1�1/R0 of the population
is already immune
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Basic epidemiological models

Models used in more realistic settings are more complex, but the
basic ingredients remain largely the same.

https://covid-19.tacc.utexas.edu/media/filer_public/dc/16/dc1685ad-4f56-4d63-a330-1d254dff54a0/omicron_projections_2_-_01062022_-_ut.pdf
https://covid-19.tacc.utexas.edu/media/filer_public/dc/16/dc1685ad-4f56-4d63-a330-1d254dff54a0/omicron_projections_2_-_01062022_-_ut.pdf
https://doi.org/10.1016/j.epidem.2014.09.003
https://doi.org/10.1016/j.epidem.2014.09.003
https://doi.org/10.1073/pnas.1720606115
https://doi.org/10.1073/pnas.1720606115
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Assumptions challenged by COVID-19

Main epidemiological assumptions

� the disease results either in complete immunity or death (SIR)

� the disease is not fatal and conveys no immunity (SIS)

� all individuals are equally susceptible

Main structural assumptions

� the disease is transmitted in a closed population

� contacts occur according to the law of mass-action

� the population is large enough to justify a deterministic analysis
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Assumptions challenged by COVID-19

Challenged assumption #1 : contacts occur according to the law of
mass-action

? many outbreaks are not shaped by the “average” individuals
but rather by a minority of superspreading events

https://www.nature.com/articles/nature04153
https://doi.org/10.1073/pnas.1614595114
https://doi.org/10.1016/S0140-6736(20)30462-1
https://doi.org/10.1016/S1473-3099(21)00406-0
https://www.scientificamerican.com/article/how-superspreading-events-drive-most-covid-19-spread1/
https://doi.org/10.1371/journal.pbio.3000897
https://doi-org.acces.bibl.ulaval.ca/10.1016/j.jtbi.2004.07.026
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Assumptions challenged by COVID-19

Challenged assumption #2 : the population is large enough to justify
a deterministic analysis

? at the early stage, the outcome of an outbreak depends on
stochastic events

https://doi.org/10.1016/j.jtbi.2004.07.026
https://doi.org/10.1371/journal.pbio.3000897
https://doi.org/10.1371/journal.pbio.3000897
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Contact network epidemiology

Main ideas :

� takes into account the contact network between individuals.

� infectious disease transmitted from an infected individual to
their susceptible neighbors in the contact network.

� the structure of this contact network shapes the spreading
dynamics.

Mathematical abstraction :

� nodes (vertices) : individuals

� links (edges) : (potential) disease-causing contacts between
two individuals

� network (graph) : contact network of a population

https://www.cdc.gov/coronavirus/2019-ncov/images/case-updates/math-models-medium.jpg
https://doi.org/10.1038/nature02541
https://doi.org/10.1090/S0273-0979-06-01148-7
https://doi.org/10.1155/2011/284909
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Contact network epidemiology

E. Kenah & J. M. Robins, Second look at the spread of epidemics on networks, Phys. Rev. E, 76:036113 (2007)

E. Kenah & J. C. Miller, Epidemic Percolation Networks, Epidemic Outcomes, and Interventions, Interdiscip. Perspect. Infect. Dis., 543520 (2011)

Epidemic percolation networks (EPNs) :

� previous slide : stochastic process is taking place on the
contact network to produce an outcome

� EPNs : consider an ensemble of random networks encoding
all possible outcomes
! links indicate contacts that will transmit the disease

) studying the EPNs random network ensemble becomes equi-
valent to studying the spreading dynamics

https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1155/2011/543520


13

Contact network epidemiology

E. Kenah & J. M. Robins, Second look at the spread of epidemics on networks, Phys. Rev. E, 76:036113 (2007)

E. Kenah & J. C. Miller, Epidemic Percolation Networks, Epidemic Outcomes, and Interventions, Interdiscip. Perspect. Infect. Dis., 543520 (2011)

Epidemic percolation networks (EPNs) :

� previous slide : stochastic process is taking place on the
contact network to produce an outcome

� EPNs : consider an ensemble of random networks encoding
all possible outcomes
! links indicate contacts that will transmit the disease

) studying the EPNs random network ensemble becomes equi-
valent to studying the spreading dynamics

https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1155/2011/543520


14

Contact network epidemiology

Probability generating functions (PGFs)

� a PGF is a formal power series whose coe�cients are a probability mass function {an}n�0

A(x) =
1X

n�0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

� computing the moments

A(1) =
1X

n�0

an = 1 ; hni =
1X

n�0

n an =
dA(x)

dx

����
x=1

= A0(1) ; hnpi =
1X

n�0

np an =

✓
x
d

dx

◆p

A(x)

����
x=1

� extracting the coe�cients

an =
1

n!

dnA(x)

dxn

����
x=0

=
1

2⇡

Z 2⇡

0

A(ei✓)e�in✓d✓

� sum of a �x/random number of variables drawn independently

Bfix
2 (x) =

X

l�0

bl x
l =

X

l�0

lX

n=0

anal�nx
l =

1X

n�0

anx
n

1X

m�0

amx
m = [A(x)]2 ; Bfix

p (x) = [A(x)]p ; Crand(x) =
1X

n�0

an
⇥
A(x)

⇤n
= A

�
A(x)

�

https://doi.org/10.1016/j.idm.2018.08.001
https://www.routledge.com/generatingfunctionology-Third-Edition/Wilf/p/book/9781568812793
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Contact network epidemiology

Probability generating functions (PGFs) formalism

� assuming a very, very large population (i.e. neglecting �nite-size e�ects)

� patient zero causes k secondary infections with probability pk (degree distribution of the EPN)

G0(x) = + x+ x2 + x3 + . . . =
1X

k�0

pkx
k ; hki =

1X

k�0

k pk = G0
0(1) ; hk2i =

1X

k�0

k2 pk

� a newly infected individual causes k new infections with probability (k + 1)pk+1/hki (excess degree distribution of the EPN)

G1(x) = + x+ x2 + x3 + . . . =
1X

k�0

(k + 1)pk+1

hki xk =
G0

0(x)

G0
0(1)

� average number of secondary infections a newly infected individual causes

G0
1(1) =

hk2i � hki
hki ⌘ R0

� all outbreaks will eventually die out when R0 < 1

� some outbreaks will eventually die out when R0 > 1

https://doi.org/10.1016/j.idm.2018.08.001
https://doi.org/10.1103/PhysRevE.66.016128
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Contact network epidemiology

Probability generating functions (PGFs) formalism

� probability u that an outbreak eventually dies out

u = = + + + + . . . =
1X

k�0

(k + 1)pk+1

hki u
k = G1(u)

� the fraction of the population infected in an epidemic wave (and the probability of such wave) is

R(1) =
1X

k�0

pk(1� u
k) = 1�G0(u)

� H0(x) : PGF of the distribution of the size of outbreaks that will eventually die out

H1(x) = = + + + + . . . = x

1X

k�0

(k + 1)pk+1

hki [H1(x)]
k = xG1

�
H1(x)

�

� the distribution of the size of outbreaks that will eventually die out can be extracted from

H0(x) = xG0

�
H1(x)

�

https://doi.org/10.1016/j.idm.2018.08.001
https://doi.org/10.1103/PhysRevE.66.016128
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What can we learn from contact network epidemiology?

Lesson #1 : the friendship paradox

� on average, your friends have more friends than you do

! a random individual has k friends with probability pk

! however, their friends have k friends with probability / kpk

� by spreading on a contact network, the disease naturally over-
samples individuals more likely to cause a larger number of
secondary infections

� ignoring this e�ect leads back to the mass-action assumption

https://doi.org/10.1098/rsif.2020.0393
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What can we learn from contact network epidemiology?

Lesson #2 : the e�ect of superspreading events

� the PGF formalism falls back to the outcome of the SIR dyna-
mics when pk is a Poisson distribution

G0(x) = G1(x) = eR0(x�1) ; R(1) = 1� e�R0R(1)

� the mass-action assumption is not appropriate for diseases
whose propagation is driven by superspreading events
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What can we learn from contact network epidemiology?

Lesson #3 : we need to look beyondR0 for overdispersed infectious
diseases like COVID-19

� negative binomial distribution for secondary cases

G1(x) =


1 +

R0(x� 1)

�

���

shows the great impact overdispersion (small �) has on the
spreading dynamics

� in other words, ifR0 > 1, our attention should not be focused
on whether R0 equals 2.5 or 3.5, but rather be focused on
�guring out how much heterogeneity there is behind it (what
is � ?)

https://doi.org/10.1098/rsif.2020.0393
https://doi.org/10.1098/rsif.2020.0393
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Lesson #4 : COVID-19 is particularly overdispersed

� plans prepared with pandemic In�uenza in mind might fall
short to contain the spread of COVID-19

https://doi.org/10.1098/rsif.2020.0393
https://doi.org/10.1098/rsif.2020.0393
https://doi.org/10.1098/rsif.2020.0393
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What can we learn from contact network epidemiology?

Lesson #5 : distinction between “risk” and “spread”

� mass-action assumes the risk for individuals to become infec-
ted is uniformly distributed (i.e. in-degree in the EPN distri-
buted according to a Poisson)

� following links in the EPN in their opposite direction over-
samples individuals that will cause a larger number of secon-
dary cases

! backward contact tracing
! “cluster busting”

https://arxiv.org/abs/2005.11283
https://arxiv.org/abs/2005.11283
https://doi.org/10.1038/s41567-021-01187-2
https://www.lapresse.ca/covid-19/2021-05-24/montreal-et-la-troisieme-vague/la-prudence-a-paye.php
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What can we learn from contact network epidemiology?

Lesson #6 : assessing the pandemic potential of an emerging di-
sease

� parameters of the EPN can be inferred from early incidence
data

� doing so provides an assessment on the risk of a pandemic

� validation using data from the 2014-2016 Ebola Virus Di-
sease (EVD) epidemic in Sierra Leone indicates that the PGF
formalism provides realistic forecasts

https://arxiv.org/abs/2111.08686
https://arxiv.org/abs/2111.08686
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.4.2000058
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