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Dimension reduction: general idea

For a non-linear dynamical system composed of a large number of variables ({xi}i=1,...,N), �nd a system

� composed of a smaller number of variables ({�i}i=1,...,n) where n ⌧ N ;

� that is easier to analyze;

� preserves (some) key dynamical features of the original system.

ẋ1 = f1(x1, . . . , xN)

ẋ2 = f2(x1, . . . , xN)
...

ẋN = fN(x1, . . . , xN)

)

�̇1 = g1(�1, . . . ,�n)

�̇2 = g2(�1, . . . ,�n)
...

�̇n = gn(�1, . . . ,�n)
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Yet, many complex network systems still elude the best dimension
reduction techniques.

The idea of dimension reduction has been around for a while and
is present in various scienti�c disciplines.

https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1007/978-3-540-78841-6
https://doi.org/10.1016/0009-2509(90)85020-E
https://doi.org/10.1146/annurev-control-061820-083817
https://doi.org/10.1146/annurev-control-061820-083817
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Although successful, dimension reduction of dynamics on networks has
thus far been limited to

� undirected networks;
� “homogenous” networks (e.g., uniform communities, homogeneous

degree distribution);
� very low values of n (= 1, 2).

https://doi.org/10.1038/nature16948
https://doi.org/10.1016/j.isci.2020.101912
https://doi.org/10.1103/PhysRevE.95.062307
https://doi.org/10.1073/pnas.1714958115
https://doi.org/10.1103/PhysRevResearch.2.043215
https://doi.org/10.1103/PhysRevX.9.011042
https://doi.org/10.1103/PhysRevResearch.4.023257
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Our approach to dimension reduction
Original system:

� N nodes
� magnitude of interaction from node j to node i is wij ;
� self-dynamics f(xi) is the same for every nodes;
� interaction dynamics g(xi, xj) is the same for every interac-

tions;
� dynamics has the generic form

ẋi = f(xi) +
NX

j=1

wijg(xi, xj) for i = 1, . . . , N
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Our approach to dimension reduction
Original system:

� N nodes
� magnitude of interaction from node j to node i is wij ;
� self-dynamics f(xi) is the same for every nodes;
� interaction dynamics g(xi, xj) is the same for every interac-

tions;
� dynamics has the generic form

ẋi = f(xi) +
NX

j=1

wijg(xi, xj) for i = 1, . . . , N

Examples:

1. Neuronal dynamics (Hop�eld’s continuous model)

ẋi = �xi +
NX

j=1

wij
1

1 + e�⌧(xj�µ)

with parameters ⌧ and µ. Proc. Natl. Acad. Sci. U.S.A. 80:3088 (1984)

2. Epidemiological dynamics (SIS)

ẋi = �xi + �(1� xi)
NX

j=1

wijxj

with parameter �. Rev. Mod. Phys. 87:925 (2015)

3. Ecological mutualistic dynamics

ẋi = B + xi

⇣
1� xi

K

⌘⇣
xi

C
� 1

⌘
+

NX

j=1

wij
xixj

D + Exi +Hxj

with parameters B, C , D, E, H and K . Am. Nat. 159:231 (2002)

https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1086/338510
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Our approach to dimension reduction
Original system:

ẋi = f(xi) +
NX

j=1

wijg(xi, xj) for i = 1, . . . , N

Step 1: De�ne the variables of the reduced system

� node heterogeneity is solely encoded in the adjacency matrix
(by construction);

� nodes can be classi�ed into n groups that share similar con-
nectivity properties (e.g. assortative communities, bipartite
networks; by assumption);

� nodes with similar connectivity pro�les have similar activities
(by assumption);

� build one linear observable for each group ⌫ = 1, . . . , n:

�⌫ =
NX

i=1

a⌫ixi with
NX

i=1

a⌫i = 1 and a⌫i = 0 if i /2 G⌫
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Our approach to dimension reduction
Original system:

ẋi = f(xi) +
NX

j=1

wijg(xi, xj) for i = 1, . . . , N

Step 2: Derive the equations of the reduced system

� nodes with similar connectivity pro�les have similar activities (by assumption);
� �rst-order Taylor expansion around the value of the appropriate observable (where i 2 G⌫ and j 2 G⇢)

�̇⌫ =
NX

i=1

a⌫iẋi =
NX

i=1

a⌫if(xi) +
NX

i,j=1

a⌫iwijg(xi, xj)

⇡
NX

i=1

a⌫i

h
f(�⌫) + f

0(�⌫)(xi � �⌫)
i
+

NX

i,j=1

a⌫iwij

h
g(�⌫ ,�⇢) + g

(1)(�⌫ ,�⇢)(xi � �⌫) + g
(2)(�⌫ ,�⇢)(xj � �⇢)

i

⇡ f(�⌫) +
nX

⇢=1

W⌫⇢g(�⌫ ,�⇢)

where W⌫⇢ =
X

i2G⌫
j2G⇢

a⌫iwij are the weights of the reduced adjacency matrix.



Step 3: Solve the compatibility equations

� the closed reduced system is obtained when using the weights
{a⌫i} satisfying the compatibility equations

W T
⌫⇢ba⌫ = W⌫⇢ba⇢

K⌫⇢ba⌫ = W⌫⇢ba⌫

with W =

0

B@
W11 · · · W1n
... . . . ...

Wn1 · · · Wnn

1

CA and K⌫⇢ =

0

BBB@

k
⇢
i1

k
⇢
i2

. . .
k
⇢
im⌫

1

CCCA

where {i1, i2, . . . , im⌫} = G⌫ and k
⇢
i =

X

j2G⇢

wij .

1. Challenge: the compatibility equations cannot be full�lled si-
multaneously in general.

2. Observation: if the connectivity properties in each groups are
very similar, then K⌫⇢ / I .

3. Heuristic: �nd the ba⌫ by solving the equations involvingW T
⌫⇢.
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Validation on homogeneous networks with community structure
hKi = 1

N

nX

⌫=1

|G⌫ |
nX

⇢=1

W⌫⇢

h�i = 1

N

nX

⌫=1

|G⌫ |�⌫



hKi = 1

N

nX

⌫=1

|G⌫ |
nX

⇢=1

W⌫⇢

h�i = 1

N

nX

⌫=1

|G⌫ |�⌫
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Validation on heterogeneous networks with community structure
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Real networks
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Take-home message:

� extension of the dimension reduction formalism to heterogeneous and directed networks;
� observables have a clear interpretation (i.e. weighted average);
� n provides an idea of the e�ective dimension of a dynamics.

What else can be found in the manuscript?

� formal derivation of the reduced system as well as an extension including correction terms;
� systematic method to approximate the compatibility equations;
� sensibility analysis about the choice for the node partition;
� algorithm to re�ne the partitions;
� detailled case studies.

Open questions:

� How can we take into account signed interactions (e.g. inhibitory/exitatory synapses)?
� Is there a way to know the value fo n beforehand?

https://arxiv.org/abs/2206.11230
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Structure-function relationship (SFR) in complex systems

Structure-function relationship: the interplay between a process
X = (Xi,t) and a graph G.

� Xi,t is the state of node i at time t;
� G determines how the nodes interact within X .



Prediction: Function from structure
To what extent does knowing the structure allow us to predict the behavior of the system?
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Why should we care?

Reconstruction: Structure from function
To what extent can we hope to reconstruct the underlying network from detailled time series?

https://doi.org/10.1038/s41467-019-08616-0
http://arxiv.org/abs/2005.14575
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Our objective: to measure the SFR using information theory

SFR ⇡ 42 bits
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Our objective: to measure the SFR using information theory

For the framework of information theory to be meaningful in this
context, we assume that

� G is a random graph ensemble, i.e. G ⇠ P (G);
� X is a stochastic process conditioned onG, i.e. X ⇠ P (X|G).

All other quantities can be computed from P (G) and P (X|G)

H(G) = h� logP (G)i
H(X) = h� logP (X)i

H(G|X) = h� logP (G|X)i
H(X|G) = h� logP (X|G)i

where

P (X) =
X

G⇤

P (G⇤)P (X|G⇤)

P (G|X) =
P (X|G)P (G)

P (X)
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Our objective: to measure the SFR using information theory

The mutual information I(X;G) quanti�es the strength of the rela-
tionship between X and G.

� it is the knowledge gained about X when G is known;
� it is the knowledge gained about G when X is known.

For the framework of information theory to be meaningful in this
context, we assume that

� G is a random graph ensemble, i.e. G ⇠ P (G);
� X is a stochastic process conditioned onG, i.e. X ⇠ P (X|G).

All other quantities can be computed from P (G) and P (X|G)

H(G) = h� logP (G)i
H(X) = h� logP (X)i

H(G|X) = h� logP (G|X)i
H(X|G) = h� logP (X|G)i

where

P (X) =
X

G⇤

P (G⇤)P (X|G⇤)

P (G|X) =
P (X|G)P (G)

P (X)

The mutual information can be written from the perspective of X
as well as from the perspective of G

I(X;G) = H(G)�H(G|X)

= H(X)�H(X|G)
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Two faces of the same coin

The mutual information can be written from the perspective of X
as well as from the perspective of G

I(X;G) = H(G)�H(G|X)

= H(X)�H(X|G)

These two perspectives allow us to introduce

U(X|G) =
I(X;G)

H(X)
= 1� H(X|G)

H(X)
(predictability)

U(G|X) =
I(X;G)

H(G)
= 1� H(G|X)

H(G)
(reconstructability)
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The evidence probability estimation problem
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The computation of H(X) and H(G|X) requires the evaluation of
the log-evidence

logP (X) = log

"
X

G⇤2GN

P (G⇤)P (X | G⇤)

#

which involves the enumeration of all graphs and therefore be-
comes intractable with N .

Two convenient approximations:

1. mean-�eld (MF) approximation: lower bound for I(X;G)

2. annealed importance sampling (AIS): upper bound for I(X;G)
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Dual behavior of reconstructability and predictability
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Take-home message:

� the SFR can be quanti�ed using information theory (mutual information)
� mutual information provides information on both the reconstructability and the predictability
� reconstructability and predictability can behave in a dual manner
� limitations due to enumeration can be bypassed using biased estimators that provide upper and lower bounds

What else can be found in the manuscript?

� formal de�nition of duality
� formal proof of the T -duality
� description of the biased estimators and characterization of their bias (i.e. lower/upper bound)

Open questions:

� Is there a deep connection between duality and criticality?
� To what extent can we apply this framework to gain better insight about speci�c problems?
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https://arxiv.org/abs/2206.04000


Marina Vegué Llorente Charles Murphy Patrick DesrosiersVincent Thibeault

arXiv:2206.04000
arXiv:2206.11230

https://sentinellenord.ulaval.ca/
https://www.ulaval.ca/
https://www.nserc-crsng.gc.ca/index_fra.asp
https://www.cfref-apogee.gc.ca/home-accueil-fra.aspx
https://www.calculquebec.ca
https://frq.gouv.qc.ca/nature-et-technologies/
https://www.computecanada.ca/?lang=fr
https://www.dynamica.phy.ulaval.ca
https://arxiv.org/abs/2206.04000
https://arxiv.org/abs/2206.11230

