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Outline

Dimension reduction of dynamics on modular and heterogeneous directed networks

Marina Vegué, Vincent Thibeault, Patrick Desrosiers, Antoine Allard

Dimension reduction is a common strategy to study non-linear dynamical systems composed by a large number of variables. The goal is to find a smaller version of the system whose time evolution is easier
to predict while preserving some of the key dynamical features of the original system. Finding such a reduced representation for complex systems is, however, a difficult task. We address this problem for
dynamics on weighted directed networks, with special emphasis on modular and heterogeneous networks. We propose a two-step dimension-reduction method that takes into account the properties of the
adjacency matrix. First, units are partitioned into groups of similar connectivity profiles. Each group is associated to an observable that is a weighted average of the nodes' activities within the group. Second,
we derive a set of conditions that must be fulfilled for these observables to properly represent the original system's behavior, together with a method for approximately solving them. The result is a reduced
adjacency matrix and an approximate system of ODEs for the observables' evolution. We show that the reduced system can be used to predict some characteristic features of the complete dynamics for
different types of connectivity structures, both synthetic and derived from real data, including neuronal, ecological, and social networks. Our formalism opens a way to a systematic comparison of the effect
of various structural properties on the overall network dynamics. It can thus help to identify the main structural driving forces guiding the evolution of dynamical processes on networks.
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Duality between predictability and reconstructability in complex systems
Charles Murphy, Vincent Thibeault, Antoine Allard, Patrick Desrosiers

Predicting the evolution of a large system of units using its structure of interaction is a fundamental problem in complex system theory. And so is the problem of reconstructing the structure of interaction
from temporal observations. Here, we find an intricate relationship between predictability and reconstructability using an information-theoretical point of view. We use the mutual information between a
random graph and a stochastic process evolving on this random graph to quantify their codependence. Then, we show how the uncertainty coefficients, which are intimately related to that mutual
information, quantify our ability to reconstruct a graph from an observed time series, and our ability to predict the evolution of a process from the structure of its interactions. Interestingly, we find that
predictability and reconstructability, even though closely connected by the mutual information, can behave differently, even in a dual manner. We prove how such duality universally emerges when changing
the number of steps in the process, and provide numerical evidence of other dualities occurring near the criticality of multiple different processes evolving on different types of structures.
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Dimension reduction: general idea

For a non-linear dynamical system composed of a large number of variables ({x; };—1... v ), find a system

00000

— composed of a smaller number of variables ({x;}i=1..,) where n < N;

.....

— that is easier to analyze;

— preserves (some) key dynamical features of the original system.

.C.Cl:fl(.fljl,...,ZEN) Xlzgl(Xh---aXn)
Zi?QZfQ(ZEl,...,QjN) nggg(xl,...,xn)
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The idea of dimension reduction has been around for a while and
IS present in various scientific disciplines.
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Qur approach to dimension reduction

Original system:

— N nodes
— magnitude of interaction from node j to node ¢ Is w;;;
— self-dynamics f(z;) is the same for every nodes;

— interaction dynamics g(z;, z;) is the same for every interac-
tions;

— dynamics has the generic form

N
T; = f(a:z)—kaUg(xz,:Ej) for ¢ = 1,...,N

g=1




Qur approach to dimension reduction

Original system: Examples:
— NV nodes 1. Neuronal dynamics (Hopfield’s continuous model)
— magnitude of interaction from node j to node ¢ Is w;;;
. . 1
— self-dynamics ) IS the same for every nodes; ro—
Y f(ﬂf ) Y L Li T Z UJZ] 1 + 6—7(333 i)
— interaction dynamics g(z;, z;) is the same for every interac- 7=
tions; with parameters r and L. Proc. Natl. Acad. Sci. U.S.A. 80:3088 (1984)

— dynamics has the generic form

2. Epidemiological dynamics (SIS
fi:f(flfi)JrZwijg(%mj) fore=1,...,N P 5 4 (SIS)
j=1

o ] j=1
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0o 20l g o T | with parameter ~. Rev. Mod. Phys. 87:925 (2015
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with parameters B, C, D, E, H and K. Am. Nat. 159:231 (2002)
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Qur approach to dimension reduction e o
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Step 1: Define the variables of the reduced system
— node heterogeneity is solely encoded in the adjacency matrix
(by construction): o Gy
® O
— nodes can be classified into n groups that share similar con- ® o %o ‘, 3
nectivity properties (e.g. assortative communities, bipartite G1 o NSre .
networks: by assumption); o o %o Z '. '. o o 3
@) o o
— nodes with similar connectivity profiles have similar activities oS _.o °‘ ¢ o S : o' e
(by assumption); O g AN o——o L
, _ O /oo Nee ® ¢ o=? ® o
— build one linear observable for each group v =1,...,n: S Hexte-ree S ——e ¢
@ .. o ® ® ® o e ©O
N N G4

T Zamxi with Zam =1 and a, =0ifi ¢ G,
i=1

1=1



Qur approach to dimension reduction e o
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Original system: . o %0
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Step 2: Derive the equations of the reduced system

— nodes with similar connectivity profiles have similar activities (by assumption);

— first-order Taylor expansion around the value of the appropriate observable (wherei € G, and j € G))




Qur approach to dimension reduction

Step 3: Solve the compatibility equations

— the closed reduced system is obtained when using the weights
{a,;} satisfying the compatibility equations

T/\ o A
K, ,a =W,a,

/Wn e Wy, ) "

with W = and K, = -

where {il,iz, e ,imy} - G,/ and kfzp — E Wi -

jEG,

Ty,

/

x
X

10



Qur approach to dimension reduction

Step 3: Solve the compatibility equations
— the closed reduced system is obtained when using the weights
{a,;} satisfying the compatibility equations
W, a, =W,,a,
K, a, =W,a,
/Wn Wln\ "
with W = : ' :

where {il,iz, e ,imy} - G,/ and ]fzp — E Wi -

jEG,

1. Challenge: the compatibility equations cannot be fullfilled si-
multaneously in general.

2. Observation: if the connectivity properties in each groups are
very similar, then K, , o< I.

3. Heuristic: find the a, by solving the equations involving WVTP.

a2
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Validation on homogeneous networks with community structure
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Validation on heterogeneous networks with community structure
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Take-home message:

— extension of the dimension reduction formalism to heterogeneous and directed networks;

— observables have a clear interpretation (i.e. weighted average);

— n provides an idea of the effective dimension of a dynamics.
What else can be found in the manuscript?

— formal derivation of the reduced system as well as an extension including correction terms;
— systematic method to approximate the compatibility equations;

— sensibility analysis about the choice for the node partition:;

— algorithm to refine the partitions;

— detailled case studies.
Open guestions:

— How can we take into account signed interactions (e.g. inhibitory/exitatory synapses)?

— |s there a way to know the value fo n beforehand?
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Structure-function relationship (SF

Node activity

R) In complex systems

Structure-function relationship: the interplay between a process
X = (X;) and a graph G.

— X, Is the state of node 7 at time ¢;

— (G determines how the nodes interact within X.

10



Why should we care?

Prediction: Function from structure
To what extent does knowing the structure allow us to predict the behavior of the system?

AN

COMMUNICATIONS

ARTICLE
https://doi.org/10.1038/541467-019-08616-0 OPEN
On the predictability of infectious disease
outbreaks
Samuel V. Scarpino23456 & Giovanni Petri® &7
— —

Reconstruction: Structure from function
To what extent can we hope to reconstruct the underlying network from detailled time series?

Predicting Dynamics on Networks Hardly Depends on the Topology
Bastian Prasse, Piet Van Mieghem

Processes on networks consist of two interdependent parts: the network topology, consisting of the links between nodes, and the dynamics, specified by some governing equations. This work considers the
prediction of the future dynamics on an unknown network, based on past observations of the dynamics. For a general class of governing equations, we propose a prediction algorithm which infers the
network as an intermediate step. Inferring the network is impossible in practice, due to a dramatically ill-conditioned linear system. Surprisingly, a highly accurate prediction of the dynamics is possible
nonetheless: Even though the inferred network has no topological similarity with the true network, both networks result in practically the same future dynamics.

17
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Qur objective: to measure the SF

R using information theory

Node activity

18



Our objective: to measure the SFR using information theory

For the framework of information theory to be meaningful in this All other quantities can be computed from P(G) and P(X|G)
context, we assume that |
— G is arandom graph ensemble, i.e. G ~ P(G); H(G) = (~log P(G))
| | e v H(X) = (~log P(X))
— X is astochastic process conditioned on G, i.e. X ~ P(X|G). H(G|X) = (—log P(G| X))
H(X|G) = (~log P(X|G))

4 Structure G Dynamics X——,




Our objective: to measure the SFR using information theory

For the framework of information theory to be meaningful in this
context, we assume that

All other quantities can be computed from P(G) and P(X|G)

| | | H(G) = (—log P(G))
— @ is arandom graph ensemble, i.e. G ~ P(G); H(X) = (—log P(X))
— X is astochastic process conditioned on G, i.e. X ~ P(X|G). H(G|X) = (- ;:og P(G|X))
H(X|G) = (—log P(X|G))
& Structure G Dynamics X——,
VAR~ where
2 M N WAWAMANMAA
& TNyt P(X) = ZP(G*)P(X|G*)
E Rty G-
o~y s P(X|G)P(G)
Time P(GlX)

H(G) H(X)

The mutual information can be written from the perspective of X
as well as from the perspective of GG

The mutual information I(X; G) quantifies the strength of the rela-
tionship between X and G.

— jtist
— Jtist

e

e

<NOW

<NOW

cd

€

ge gained

ge gainec

bout X when G is

bout G when X is

Known:

<NOWIN.

I(X;G) = H(G) — H(G|X)
= H(X) - H(X|G)
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Two faces of the same coin

4 Structure G

H(G)

(a)

Highly predictable
Weakly reconstructable

(b)

Dynamics X——,

Highly reconstructible
Weakly predictable

The mutual information can be written from the perspective of X
as well as from the perspective of GG

I(X:G) = H(G) — H(G|X)
— H(X) — H(X|G)

These two perspectives allow us to introduce

UX|G) = Igi;g) =1 Hh([)(()](C)?) (predictability)
U(G|X) = ]g?;;) =1 H;}fgf) (reconstructability)
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The evidence probability estimation problem

The computation of H(X) and H(G|X) requires the evaluation of
the log-evidence

log P(X) = log

> P(G")P(X |G

| G*eEgn

Qo

@)

which involves the enumeration of all graphs and therefore be-
comes intractable with N.

Two convenient approximations:

1. mean-field (MF) approximation: lower bound for I(X; G)
2. annealed importance sampling (AIS): upper bound for I(X; G)

Mutual information [bits]
AN

= xact
=0o=  AJS
2 - =g= MF
Admissible (a)
0 | | |
2000 0.0 0.5 1.0 1.5 2.0

p—d
Ot
-
-
]

500 -

Mutual information [bits
o
S
|

-

0.

(b)

0

0.2 0.4 0.6 0.8
Coupling constant J
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Dual behavior of reconstructability and predictability

== Reconstructability == ==  Predictability

Predictability

Glauber SIS Cowan
1.0 0.5
2 0.8 0.4
= .
e) =
< @D
+ 0.6 —h— J(k) = 2 0.3 &
= —m— J(k) =1 g'-
g 0.4 —o— J(k) =1/2 0.2 9,
o 0.2 0.1
0.0 0.0
Number of time steps Number of time steps Number of time steps
=—o==Reconstructability " A
Glauber SIS
1.0 |
Q
~ I g
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0.25

Reconstructability
-
o

F*l_l_l

(b)

0.0 0.1

0.2
Coupling constant J Transmission rate \

0.3 0.00 0.05 0.10 0.15

0.20 0.2 0.3 0.4 0.5
Potential gain v
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0.05
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Take-home message:

— the SFR can be quantified using information theory (mutual information)

— mutual information provides information on both the reconstructability and the predictability

— reconstructability and predictability can behave in a dual manner

— limitations due to enumeration can be bypassed using biased estimators that provide upper and lower bounds

What else can be found in the manuscript?

— formal definition of duality

— formal proof of the T-duality
— description of the biased estimators and characterization of their bias (i.e. lower/upper bound)

Open guestions:

— |s there a deep connection between duality and criticality?

— To what extent can we apply this framework to gain better insight about specific problems?

Duality between predictability and reconstructability in complex systems

Charles Murphy, Vincent Thibeault, Antoine Allard, Patrick Desrosiers

Predicting the evolution of a large system of units using its structure of interaction is a fundamental problem in complex system theory. And so is the problem of reconstructing the structure of interaction
from temporal observations. Here, we find an intricate relationship between predictability and reconstructability using an information-theoretical point of view. We use the mutual information between a
random graph and a stochastic process evolving on this random graph to quantify their codependence. Then, we show how the uncertainty coefficients, which are intimately related to that mutual
information, quantify our ability to reconstruct a graph from an observed time series, and our ability to predict the evolution of a process from the structure of its interactions. Interestingly, we find that
predictability and reconstructability, even though closely connected by the mutual information, can behave differently, even in a dual manner. We prove how such duality universally emerges when changing
the number of steps in the process, and provide numerical evidence of other dualities occurring near the criticality of multiple different processes evolving on different types of structures.
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Marina Vegue Llorente Charles Murphy Vincent Thibeault Patrick Desrosiers

Dimension reduction of dynamics on modular and heterogeneous directed networks Duality between predictability and reconstructability in complex systems
Marina Vegué, Vincent Thibeault, Patrick Desrosiers, Antoine Allard Charles Murphy, Vincent Thibeault, Antoine Allard, Patrick Desrosiers

Dimension reduction is a common strategy to study non-linear dynamical systems composed by a large number of variables. The goal is to find a smaller version of the system whose time evolution is easier

to predict while preserving some of the key dynamical features of the original system. Finding such a reduced representation for complex systems is, however, a difficult task. We address this problem for
dynamics on weighted directed networks, with special emphasis on modular and heterogeneous networks. We propose a two-step dimension-reduction method that takes into account the properties of the
adjacency matrix. First, units are partitioned into groups of similar connectivity profiles. Each group is associated to an observable that is a weighted average of the nodes' activities within the group. Second,
we derive a set of conditions that must be fulfilled for these observables to properly represent the original system's behavior, together with a method for approximately solving them. The result is a reduced
adjacency matrix and an approximate system of ODEs for the observables' evolution. We show that the reduced system can be used to predict some characteristic features of the complete dynamics for

different types of connectivity structures, both synthetic and derived from real data, including neuronal, ecological, and social networks. Our formalism opens a way to a systematic comparison of the effect
of various structural properties on the overall network dynamics. It can thus help to identify the main structural driving forces guiding the evolution of dynamical processes on networks.

. — arxXiv:2206.04000
arxXiv:2206.11230

Predicting the evolution of a large system of units using its structure of interaction is a fundamental problem in complex system theory. And so is the problem of reconstructing the structure of interaction
from temporal observations. Here, we find an intricate relationship between predictability and reconstructability using an information-theoretical point of view. We use the mutual information between a
random graph and a stochastic process evolving on this random graph to quantify their codependence. Then, we show how the uncertainty coefficients, which are intimately related to that mutual
information, quantify our ability to reconstruct a graph from an observed time series, and our ability to predict the evolution of a process from the structure of its interactions. Interestingly, we find that
predictability and reconstructability, even though closely connected by the mutual information, can behave differently, even in a dual manner. We prove how such duality universally emerges when changing
the number of steps in the process, and provide numerical evidence of other dualities occurring near the criticality of multiple different processes evolving on different types of structures.
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